Answer: Option (C) is the correct answer.
Explanation:
When we heat a fluid then the movement within the fluid makes hot (less dense) material to rise and cooler (more denser) material to sink at the bottom. This process is known as convection.
Thus, in the diagram hot (less dense) water will rise and cooler (more dense) water sinks at the bottom.
Therefore, we can conclude that according to the arrow the label belongs to cooler water sinks.
What question are you asking?
Answer:
t = 12,105.96 sec
Explanation:
Given data:
weight of spacecraft is 2000 kg
circular orbit distance to saturn = 180 km
specific impulse = 300 sec
saturn orbit around the sun R_2 = 1.43 *10^9 km
earth orbit around the sun R_1= 149.6 * 10^ 6 km
time required for the mission is given as t
![t = \frac{2\pi}{\sqrt{\mu_sun}} [\frac{1}{2}(R_1 + R_2)]^{3/2}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B%5Cmu_sun%7D%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%28R_1%20%2B%20R_2%29%5D%5E%7B3%2F2%7D)
where
is gravitational parameter of sun = 1.32712 x 10^20 m^3 s^2.![t = \frac{2\pi}{\sqrt{ 1.32712 x 10^{20}}} [\frac{1}{2}(149.6 * 10^ 6 +1.43 *10^9 )]^{3/2}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B%201.32712%20x%2010%5E%7B20%7D%7D%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%28149.6%20%2A%2010%5E%206%20%2B1.43%20%2A10%5E9%20%29%5D%5E%7B3%2F2%7D)
t = 12,105.96 sec
Answer:
The responses to this question can be defined as follows:
Explanation:
During energy exchange E=hv, electrodes spring through one orbit to another
Please find the image file in the attachment.
Its absorption layer comprises 0.3 eV, 0.5 eV., 0.8 eV, 2.0 eV, 2.5 eV again, as light passes via material at low temperature those lines absorbed in the strata called absorption stratum.
Answer:
The size of the magnetic force on the wire due to the Earth's magnetic field is 4.62 × 10⁻⁶ N.
Explanation:
To determine the size of the magnetic force on the wire due to the Earth's magnetic field,
The magnetic force is given by the formula
F = ILB sinθ
Where F is the magnetic force on the wire
I is the electric current in Amperes (A)
L is is the length of wire in meters (m)
B is the magnetic field in Tesla (T)
and θ is the angle between current and magnetic field
From the question,
L = 0.30 m
I = 0.50 A
B = 0.50 gauss = 0.5 × 10⁻⁴ T (NOTE: 1 Gauss = 10⁻⁴ Tesla)
θ = 38°
Now, putting the values into the equation
F = ILB sinθ
F = 0.50 × 0.30 × 0.5 × 10⁻⁴ sin38°
F = 7.5 × 10⁻⁶ (0.61566)
F = 4.62 × 10⁻⁶ N
Hence, the size of the magnetic force on the wire due to the Earth's magnetic field is 4.62 × 10⁻⁶ N.