Based on the data provided;
- number of moles of helium gas is 1.25 moles
- pressure at peak temperature is 259.3 kPa
- internal pressure is above 256 kPa, therefore, the balloon will burst.
- pressure should be reduced to a value less than 256 kPa by reducing the temperature
<h3>What is the ideal has equation?</h3>
The ideal gas equation relatesthe pressure, volume, moles and temperature of a gas.
The moles of helium gas is calculated using the Ideal gas equation:
n is the number of moles of gas
R is molar gas constant = 8.314 L⋅kPa/Kmol
P is pressure = 239 kPa
T is temperature = 21°C = 294 K
V is volume = 12.8 L
Therefore;
n = PV/RT
n = 239 × 12.8 / 8.314 × 294
n = 1.25 moles
The number of moles of helium gas is 1.25 moles
At peak temperature, T = 46°C = 319 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 319/294
P2 = 259.3 kPa
The pressure at peak temperature is 259.3 kPa
At 42°C, T = 315 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 315/294
P2 = 256.07 kPa
Since the internal pressure is above 256 kPa, the balloon will burst.
The pressure should be reduced to a value less than 256 kPa by reducing the temperature.
Learn more about gas ideal gas equation at: brainly.com/question/12873752
Answer:
C. 7.50g
Explanation:
The percent (%) by mass of a solute in a solution refers to the number of grams contained in 100g of solution by that solute. In this case, 5% by mass of pottasium chloride (KCl) means 5g of KCl is contained in 100g of solution.
Therefore, in 150g of solution, there would be:
5g/100g × 150g
= 0.05 × 150
= 7.50g of KCl solute.
Hence, 7.50g of pottasium chloride would be expected to be collected by evaporating 150.0 g of the solution.
Answer:
3rd option. 1–butanamine
Explanation:
To name the compound above, the following must be observed:
1. Locate the functional group in the chain. In this case the functional group is amine.
2. Locate the longest continuous carbon chain. This gives the parent name of the compound. In this case, the longest chain has 4 carbon i.e butane.
3. Since the functional group is amine, the parent name becomes butanamine i.e replacing the –e at the end in butane with –amine
4. Indicate the position of the functional group in the chain. In this case the functional group is at carbon 1
5. Name the compound by putting the above together.
The name of the compound is:
1–butanamine or butan–1–amine
Answer:
1. Covalent Bond
2. Ionic Bond
Explanation:
Covalent bonds are defined as the bond in which sharing of electrons takes place between atoms. The sharing of electrons is in equal number so that it form a stable balance of attraction and repulsion between atoms. In the given example of CO2 (first image) oxygen is sharing equal number of electrons with carbon to form a stable bond called covalent bond.
Ionic bonds are formed when valence electrons are transferred to other atoms and form oppositely charged ions. In ionic bond formation, the atoms that gain electrons become negatively charged and the atoms that loses electrons become positively charged. In the given example of Ca Cl2, Ca is also giving its 2 valence electrons to each Cl and there is no stable balance of attraction and repulsion between atoms.
Hence, the correct answer is:
1. Covalent Bond
2. Ionic Bond