A compound is made up of a single type of molecule. A mixture, on the other hand, is made up of different substances that can be distinguished from one another.
As an example:
Water (pure water) is a compound since it's only made up of water molecules
Seawater is a mixture since it is made up of water molecules and soluble salts
Answer:
1M HCl: add 1mol/12M = 83 ml conc. HCl to 1L of water or 8.3ml to 100ml.
2M HCl: add 2mol/12M = 167 ml conc. HCl to 1L of water or 16.7ml to 100ml.
Answer:
The fraction of water body necessary to keep the temperature constant is 0,0051.
Explanation:
Heat:
Q= heat (unknown)
m= mass (unknown)
Ce= especific heat (1 cal/g*°C)
ΔT= variation of temperature (2.75 °C)
Latent heat:
ΔE= latent heat
m= mass (unknown)
∝= mass fraction (unknown)
ΔHvap= enthalpy of vaporization (539.4 cal/g)
Since Q and E are equal, we can match both equations:

Mass fraction is:


∝=0,0051
A. We can calculate the initial concentrations of each by
the formula:
initial concentration ci = initial volume * initial
concentration / total mixture volume
where,
total mixture volume = 10 mL + 20 mL + 10 mL + 10 mL = 50
mL
ci (acetone) = 10 mL * 4.0 M / 50 mL = 0.8 M
ci (H+) = 20 mL * 1.0 M / 50 mL = 0.4 M (note: there is only 1 H+ per
1 HCl)
ci (I2) = 10 mL * 0.0050 M / 50 mL = 0.001 M
B. The rate of reaction is determined to be complete when
all of I2 is consumed. This is signified by complete disappearance of I2 color
in the solution. The rate therefore is:
rate of reaction = 0.001 M / 120 seconds
rate of reaction = 8.33 x 10^-6 M / s