The vector perpendicular to the plane of A = 3i+ 6j - 2k and B = 4i-j +3k is 16 i - 17 j - 27 k
Let r be the vector perpendicular to A and B,
r = A * B
A = 3i + 6j - 2k
B = 4i - j + 3k
a1 = 3
a2 = 6
a3 = - 2
b1 = 4
b2 = - 1
b3 = 3
a * b = ( a2 b3 - b2 a3 ) i + ( a3 b1 - b3 a1 ) j + ( a1 b2 - b1 a2 ) k
a * b = [ ( 6 * 3 ) - ( - 1 * - 2 ) ] i + [ ( - 2 * 4 ) - ( 3 * 3 ) ] j + [ ( 3 * - 1 ) - ( 4 * 6 ) ] k
a * b = 16 i - 17 j - 27 k
The perpendicular vector, r = 16 i - 17 j - 27 k
Therefore, the vector perpendicular to the plane of A = 3i + 6j - 2k and B = 4i - j + 3k is 16 i - 17 j - 27 k
To know more about perpendicular vectors
brainly.com/question/14384780
#SPJ1
- Kinetic Energy of an object is the measure of the work an object can do by virtue of its motions..
- Where KE is the kinetic energy, m is the body’s mass, and v is the body’s velocity.
- Potential energy is the stored energy in any object or system by virtue of its position or arrangement of parts..
Where,
. m is the mass in kilograms
. g is the acceleration due to gravity
. h is the height in meters
Hope it helpz~ uh..
Acceleration....................................... <span />
An energy crisis<span> is any significant (bottleneck; logistics; or price rise) in the supply of energy resources to an economy. In popular literature, it often refers to one of the energy sources used at a certain time and place, in particular those that supply national electricity grids or those used as fuel in vehicles.</span>