The density is determined on the steepness of the slope. The greater the density is bases upon the steepest slope. To conclude, I'd say Line A has the steepest slope therefore has the greatest density.
<span>The majority of the asteroids in our solar system are found
in the space between the orbits of Mars and Jupiter. (B)</span>
Answer: 3 radians/meter.
Explanation:
The general sinusoidal function will be something like:
y = A*sin(k*x - ω*t) + C
Where:
A is the amplitude.
k is the wave number.
x is the spatial variable
ω is the angular frequency
t is the time variable.
C is the mid-value.
The rule that we can use to solve this problem, is that the argument of the sin( ) function must be in radians (or in degrees)
Then if x is in meters, the wave-number must be in radians/meters, so when these numbers multiply the "meters" part is canceled.
Then for the case of the function:
y(x,t) = 0.1 sin(3x + 10t)
Where x is in meters, the units of the wave number (the 3) must be in radians/meters. Then the angular wave number is 3 radians/meter.
Answer:
ωB = 300 rad/s
ωC = 600 rad/s
Explanation:
The linear velocity of the belt is the same at pulley A as it is at pulley D.
vA = vD
ωA rA = ωD rD
ωD = (rA / rD) ωA
Pulley B has the same angular velocity as pulley D.
ωB = ωD
The linear velocity of the belt is the same at pulley B as it is at pulley C.
vB = vC
ωB rB = ωC rC
ωC = (rB / rC) ωB
Given:
ω₀A = 40 rad/s
αA = 20 rad/s²
t = 3 s
Find: ωA
ω = αt + ω₀
ωA = (20 rad/s²) (3 s) + 40 rad/s
ωA = 100 rad/s
ωD = (rA / rD) ωA = (75 mm / 25 mm) (100 rad/s) = 300 rad/s
ωB = ωD = 300 rad/s
ωC = (rB / rC) ωB = (100 mm / 50 mm) (300 rad/s) = 600 rad/s
Answer: One is called the dependent variable and the other the independent variable. The independent variable is the variable the experimenter changes or controls and is assumed to have a direct effect on the dependent variable.