Answer:
Electric field magnitude
E = K/qd
Where
K = kinetic energy of electron
d = electron distance
q = charge
Explanation:
Given the relationship between workdone and energy
Work-energy theorem:
Net workdone = Energy change
W = ∆E
In this case
W = ∆K.E
And,
∆K.E = K(final) - K(initial)
To stop the kinetic energy | K(final) = 0
K(initial) = K (given)
∆K.E = 0 - K = -K
Let the electric force on the electron has magnitude F.
And
W = -Fd = ∆K.E = -K
-Fd = -K
F = K/d .....1
The magnitude of the electric field E that can stop these electron in a distance d:
E = F/q ......2
Where q is the charge on electron.
substituting equation 1 to 2
E = (K/d)/q = K/qd
E = K/qd
Answer:

Explanation:
Given data
Coefficient of performance of a residential heat pump=1.6
Electrical power P=4kW
Required
Heat Q
Solution
The rate of heat produced is given as

Substitute the given values
So
Answer:
Period of oscillation = 1.33 seconds
Explanation:
The period of oscillation is given by:
T = 2π√[I/(MgL)]
for I = 2MR² and L = R,
Given: L = 0.22m = R
T = 2π√[2R/g]
T = 2 × 3.142 Sqrt[( 2 × 0.22)/ 9.8]
T = 6.284 Sqrt(0.44/9.8)
T = 6.284 Sqrt(0.0449)
T = 6.284 × 0.2119
T = 1.33 sec
Answer:
When the electrons jump to a higher energy state, they release energy as electromagnetic radiation, light.
Explanation:
When the solar wind gets past the magnetic field and travels towards the Earth, it runs into the atmosphere. As the protons and electrons from the solar wind hit the particles in the Earth's atmosphere, they release energy – and this is what causes the northern lights.
Answer:
The the speed of the car is 26.91 m/s.
Explanation:
Given that,
distance d = 88 m
Kinetic friction = 0.42
We need to calculate the the speed of the car
Using the work-energy principle
work done = change in kinetic energy



Put the value into the formula


Hence, The the speed of the car is 26.91 m/s.