Answer:
THE 2ND ONE HOPE THIS HELPED GOD BLESS U
Explanation:
Answer:
V = 3.54 m/s
Explanation:
Using the conservation of energy:

so:

where w is te weigh of kelly, h the distance that kelly decends, m is the mass of kelly and V the velocity in the lowest position.
So, the mass of kelly is:
m = 425N/9.8 = 43.36 Kg
and h is:
h = 1m-0.36m =0.64m
then, replacing values, we get:

Solving for v:
V = 3.54 m/s
Answer:
Speed is solved with time and distance but has no direction
Average velocity is solved with Δx/Δt and has a direction
Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.
Answer: 0.0146m
Explanation: The formula that defines the velocity of a simple harmonic motion is given as
v = ω√A² - x²
Where v = linear velocity, A = amplitude = 1.69cm = 0.0169m, x = displacement.
The maximum speed of a simple harmonic motion is derived when x = A, hence v = ωA
One half of maximum speed = speed of motion
3ωA/2 = ω√A² - x²
ω cancels out on both sides of the equation, hence we have that
A/2 = √A² - x²
(0.0169)/2 = √(0.0169² - x²)
0.00845 = √(0.0169² - x²)
By squaring both sides, we have that
0.00845² = 0.0169² - x²
x² = 0.0169² - 0.00845²
x² = 0.0002142
x = √0.0002142
x = 0.0146m