Answer:
Explanation:
The power of each of the speakers is 0.535 W. At a distance d intensity of sound can be found by the following formula
Intensity of sound = Power / 4π d²
= .535 / 4 x 3.14 x (27.3/2)²
= 2.286 x 10⁻⁴ J m⁻² s⁻¹
Intensity of sound due to other source = 5.715 x 10⁻⁵J m⁻² s⁻¹
Total intensity = 2 x 2.286 x 10⁻⁴J m⁻² s⁻¹
= 4.57 x 10⁻⁴J m⁻² s⁻¹
b ) In this case, man is standing at distances 18.15 m and 9.15 m from the sources .
The total intensity of sound reaching him is as follows
0.535 / (4 π x18.15² ) + 0.535 / (4 π x9.15² )
= 1.293 x 10⁻⁴ + 5.087 x 10⁻⁴
= 6.38 x 10⁻⁴J m⁻² s⁻¹
Answer:
The change in temperature is
Explanation:
From the question we are told that
The temperature coefficient is 
The resistance of the filament is mathematically represented as
![R = R_o [1 + \alpha \Delta T]](https://tex.z-dn.net/?f=R%20%20%3D%20%20R_o%20%5B1%20%2B%20%5Calpha%20%20%5CDelta%20T%5D)
Where
is the initial resistance
Making the change in temperature the subject of the formula
![\Delta T = \frac{1}{\alpha } [\frac{R}{R_o} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BR%7D%7BR_o%7D%20-%201%20%5D)
Now from ohm law

This implies that current varies inversely with current so

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{I} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7BI%7D%20-%201%20%5D)
From the question we are told that

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{\frac{I_o}{8} } - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7B%5Cfrac%7BI_o%7D%7B8%7D%20%7D%20-%201%20%5D)
=> 
Bourne believed that an object would float or sink at will as long as he could <span>manipulate the effect's of buoyancy which control and object to sink or float. Hope this helps!
</span>
Momentum = (mass) x (speed)
If the speed is zero, then the momentum is zero.
Answer:
The ball will hit the ground in 2.73 s
Explanation:
Hi there!
f(t) is the height of the ball at time "t". We need to find the value of "t" for which f(t) = 0.
f(t) = 0 Then:
-16 · t² + 40 · t + 10 = 0
Solving the quadratic equation using the quadratic formula (a = -16, b = 40, c = 10):
t = -0.23 s and t = 2.72 s
Since time can´t be negative, be discard that value.
The ball will hit the ground in 2.73 s.
Have a nice day!