The reaction for magnesium iodide when put into water is as below
MgI2(s) → Mg^2+(aq) + 2I^-(aq)
when magnesium iodide but into water it dissociate/ ionize completely into Mg^2+ and 2l^- ions. Magnesium iodide dissociate/ionize completely because magnesium iodide is a strong electrolyte which dissociate/ ionize completely into their ions when it is put into water .
Yes because molecules is solid
There are 3 experiments which helps to under water evaporation system.
- Both the temperature of the air surrounding the water and the rate of evaporation increased.
- In the second experiment, we observed an increase in air flow around the water, and this time, the rate of evaporation increased as well.
- In the third and final experiment, we observed an increase in the amount of light in the room, and this time, the rate of evaporation increased as well.
- Because the kinetic energy of a substance can be measured by its temperature, increasing in the temperature or kinetic energy of the air around water will also increase the kinetic energy of the water, which will increase the rate of evaporation.
- It's crucial to have good air flow since it drives water droplets in the air away from you, reducing the amount of humidity in the region. Because there will then be space for the evaporated air or space for the evaporated water to flow into the air, it will then be simpler for the water to really evaporate.
- Water in the presence of sunlight is given extra energy, which increases evaporation.
Learn more about Evaporation here:
brainly.com/question/24258
#SPJ9
<h3>
Answer:</h3>
18.9 g F₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.00 × 10²³ molecules F₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of F₂ (Diatomic) - 38.00 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
18.9306 g F₂ ≈ 18.9 g F₂