Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.
Answer:
Intrusive and Extrusive igneous rocks.
Explanation:
Igneous rocks are defined as those rocks that are formed when magma undergoes the process of crystallization and solidification at or below the earth's surface. For example, Granite, Rhyolite, Gabbro and Diorite.
The igneous rocks are of two different types, namely-
- Intrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes below or within the earth's crust. For example, Granite.
- Extrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes and solidifies at the surface of the earth. For example, Basalt.
Answer:-
1440 cases
Explanation: -
We are told that 1 pallet = 45 bundles.
We are also told that 1 bundle = 32 cases.
We need to find how many cases are there in 1 pallet.
1 pallet = 45 bundles (First conversion factor)
= 45 x 32 cases (second conversion factor)
=1440 cases
Thus we see that 1 pallet has 1440 cases. We needed to use two conversion factors for this, first to convert pallet to bundle and second to convert bundle to cases.
<span>C. The stratosphere. About 90% of the ozone is in the stratosphere which begins about 8 miles above the Earth's surface.</span>