273g/25 mL = 10.92 (that's the density)
What has a density of 10.92 grams/mL? I don't know but I bet it's in your notes or on the worksheet.
Answer:
A. 85.6 g
= 0.0856 kg.
B. 0.00027 mol/g
= 0.27 mol/kg.
C. 8.39 %
Explanation:
Given:
Molar concentration = 0.25 M
Molar weight of sucrose = 342.296 g/mol
Density of solution = 1.02 g/mL
Mass of water = 934.4 g.
Density in g/l = 1.020 g/ml * 1000ml/1 l
= 1020 g/l
Mass of solution in 1 l of solution = 1020 g
Mass of solution = mass of solvent + mass of solute
Mass of sucrose = 1020 - 934.4
= 85.6 g of sucrose in 1 l of solution.
A.
Density of sucrose = mass/volume
= molar mass/molar concentration
= 342.296 * 0.25
= 85.6 g/l
Number of moles = mass/molar mass
= 85.6/342.296
= 0.25 mol
B.
Molality = number of moles of solute/mass of solvent
= 0.25/934.4
= 0.00027 mol/g
C.
% mass of sucrose = mass of sucrose/total mass of solution * 100
= 85.6/1020 * 100
= 8.39 %
The color changes, heat change, smell change, are a few
Explanation:
In a voltaic cell, oxidation reaction occurs at anode whereas reduction reaction occurs at the cathode.
Hence, the half-cell reaction taking place at anode and cathode will be as follows.
At anode (Oxidation) :
...... (1)
At cathode (Reduction) : 
So, in order to balance the half cell reactions, we multiply reduction reaction by 3. Hence, reduction reaction equation will be as follows.
........ (2)
Therefore, overall reaction will be sum of equations as (1) + (2). Thus, net reaction equation is as follows.
Answer:
(C3H4O3) x 2 = C6H8O6, the molecular formula for Vitamin C.