Answer:
B
Explanation:
Water-Continental-Oceanic-Mantle
Answer:
Dispersion Forces are found between n-Pentane (CH₃-CH₂-CH₂-CH₂-CH₃) and n-Hexane (CH₃-CH₂-CH₂-CH₂-CH₂-CH₃).
Explanation:
Dispersion Forces are present and developed by those compounds which are non-polar in nature. In given statement n-Pentane and n-Hexane both are non-polar in nature as the electronegativity difference between Hydrogen atoms and Carbon atoms is less than 0.4.
When non-polar molecules approaches each other, a Dipole is induced in one of them, this step is known as Instantaneous Dipole, This generated Dipole on approaching another non-polar molecule induces dipole in it and the process propagates. Hence, creating intermolecular interactions.
Answer:
The correct answer is B.
The
is samller than
of the reaction . So,the reaction will shift towards the left i.e. towards the reactant side.
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:
![Q=\frac{[PCl_3][Cl_2]}{[[PCl_5]^1}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5B%5BPCl_5%5D%5E1%7D)


Given :
= 0.0454
Thus as
, the reaction will shift towards the left i.e. towards the reactant side.
Answer:
D. pUC-chloramphenicol(minus)
Explanation:
It contains chloramphenicol resistance gen, the PMB1 posses origin of replication (ori), beta-galactosidase coding gen Laz. It also has pUC18 with many cloning site in the Lac Z gene which makes the recombinant clones to be verified via culture plates which is made up of IPTG and X- Gal.
We first calculate the energy contained in one photon of this light using Planck's equation:
E = hc/λ
E = 6.63 x 10⁻³⁴ x 3 x 10⁸ / 590 x 10⁻⁹
E = 3.37 x 10⁻²² kJ/photon
Now, one mole of atoms will excite one mole of photons. This means that 6.02 x 10²³ photons will be excited
(3.37 x 10⁻²² kJ/photon) x (6.02 x 10²³ photons / mol)
The energy released will be 202.87 kJ/mol