1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olenka [21]
4 years ago
10

A non-inductive load takes a current of 15A at 125V. An inductor is then connected in series in order that the same current shal

l be supplied from 240V, 50Hz mains. Ignore the resistance of the inductor and calculate the inductance of the inductor
Engineering
1 answer:
Norma-Jean [14]4 years ago
4 0

Answer:

The inductance of the inductor is 0.051H

Explanation:

From Ohm's law;

  V = IR .................. 1

The inductor has its internal resistance referred to as the inductive reactance, X_{L}, which is the resistance to the flow of current through the inductor.

From equation 1;

V = IX_{L}

X_{L} = \frac{V}{I} ................ 2

Given that; V = 240V, f = 50Hz, \pi = \frac{22}{7}, I = 15A, so that;

From equation 2,

X_{L}= \frac{240}{15}

    = 16Ω

To determine the inductance of the inductor,

X_{L} = 2\pifL

L = \frac{X_{L} }{2 \pi f}

  = \frac{16}{2*\frac{22}{7}*50 }

 = 0.05091

The inductance of the inductor is 0.051H.

You might be interested in
Briefly explain how each of the following influences the tensile modulus of a semicrystalline polymer and why:(a) molecular weig
marin [14]

Answer:

(a) Increases

(b) Increases

(c) Increases

(d) Increases

(e) Decreases

Explanation:

The tensile modulus of a semi-crystalline polymer depends on the given factors as:

(a) Molecular Weight:

It increases with the increase in the molecular weight of the polymer.

(b) Degree of crystallinity:

Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.

(c) Deformation by drawing:

The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.

(d) Annealing of an undeformed material:

This also results in an increase in the tensile strength of the material.

(e) Annealing of  a drawn material:

A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.

5 0
3 years ago
A European car manufacturer reports that the fuel efficiency of the new MicroCar is 48.5 km/L highway and 42.0 km/L city. What a
statuscvo [17]

Answer:

Fuel efficiency for highway = 114.08 miles/gallon

Fuel efficiency for city = 98.79 miles/gallon

Explanation:

1 gallon = 3.7854 litres

1 mile = 1.6093 km

Let's first convert the efficiency to km/gallon:

48.5 km/litre = (48.5 * 3.7854) km/gallon

48.5 km/litre =  183.5919 km/gallon (highway)

42.0 km/litre = (42.0 * 3.7854) km/gallon

42.0 km/litre = 158.9868 km/gallon (city)

Next, we convert these to miles/gallon:

183.5919 km/gallon = (183.5919 / 1.6093) miles/gallon

183.5919 km/gallon = 114.08 miles/gallon (highway)

158.9868 km/gallon = (158.9868 /1.6093) miles/gallon

158.9868 km/gallon = 98.79 miles/gallon (city)

3 0
3 years ago
Technician A says that crush zones on a vehicle are designed to collapse in a controlled manner. Technician B says that reinforc
Ierofanga [76]

Answer:

only A

Explanation:

3 0
3 years ago
1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder is held in place by pins. The pins are rem
BARSIC [14]

Answer:

The final specific internal energy of the system is 1509.91 kJ/kg

Explanation:

The parameters given are;

Mass of steam = 1 kg

Initial pressure of saturated steam p₁ = 1000 kPa

Initial volume of steam, = V₁

Final volume of steam = 5 × V₁

Where condition of steam = saturated at 1000 kPa

Initial temperature, T₁  = 179.866 °C = 453.016 K

External pressure = Atmospheric = 60 kPa

Thermodynamic process = Adiabatic expansion

The specific heat ratio for steam = 1.33

Therefore, we have;

\dfrac{p_1}{p_2} = \left (\dfrac{V_2}{V_1} \right )^k = \left [\dfrac{T_1}{T_2}   \right ]^{\dfrac{k}{k-1}}

Adding the effect of the atmospheric pressure, we have;

p = 1000 + 60 = 1060

We therefore have;

\dfrac{1060}{p_2} = \left (\dfrac{5\cdot V_1}{V_1} \right )^{1.33}

P_2= \dfrac{1060}{5^{1.33}}  = 124.65 \ kPa

\left [\dfrac{V_2}{V_1} \right ]^k = \left [\dfrac{T_1}{T_2}   \right ]^{\dfrac{k}{k-1}}

\left [\dfrac{V_2}{V_1} \right ]^{k-1} = \left \dfrac{T_1}{T_2}   \right

5^{0.33} = \left \dfrac{T_1}{T_2}   \right

T₁/T₂ = 1.70083

T₁ = 1.70083·T₂

T₂ - T₁ = T₂ - 1.70083·T₂

Whereby the temperature of saturation T₁ = 179.866 °C = 453.016 K, we have;

T₂ = 453.016/1.70083 = 266.35 K

ΔU = 3×c_v×(T₂ - T₁)

c_v = cv for steam at 453.016 K = 1.926 + (453.016 -450)/(500-450)*(1.954-1.926) = 1.93 kJ/(kg·K)

cv for steam at 266.35 K = 1.86  kJ/(kg·K)

We use cv given by  (1.93 + 1.86)/2 = 1.895 kJ/(kg·K)

ΔU = 3×c_v×(T₂ - T₁) = 3*1.895 *(266.35 -453.016) = -1061.2 kJ/kg

The internal energy for steam = U_g = h_g -pV_g

h_g = 2777.12 kJ/kg

V_g = 0.194349 m³/kg

p = 1000 kPa

U_{g1} = 2777.12 - 0.194349 * 1060 = 2571.11 kJ/kg

The final specific internal energy of the system is therefore, U_{g1} + ΔU = 2571.11 - 1061.2 = 1509.91 kJ/kg.

3 0
3 years ago
The clepsydra, or water clock, was a device that the ancient Egyptians, Greeks, Romans, and Chinese used to measure the passage
Nookie1986 [14]

Suppose a tank is made of glass and has the shape of a right-circular cylinder of radius 1 ft. Assume that h(0) = 2 ft corresponds to water filled to the top of the tank, a hole in the bottom is circular with radius in., g = 32 ft/s2, and c = 0.6. Use the differential equation in Problem 12 to find the height h(t) of the water.

Answer:

Height of the water = √(128)/147456 ft

Explanation:

Given

Radius, r = 1 ft

Height, h = 2 ft

Radius of hole = 1/32in

Acceleration of gravity, g = 32ft/s²

c = 0.6

Area of the hold = πr²

A = π(1/32)² ---- Convert to feet

A = π(1/32 * 1/12)²

A = π/147456 ft²

Area of water = πr²

A = π 1²

A = π

The differential equation is;

dh/dt = -A1/A2 √2gh where A1 = Area of the hole and A2 = Area of water

A1 = π/147456, A2 = π

dh/dt = (π/147456)/π √(2*32*2)

dh/dt = 1/147456 * √128

dh/dt = √128/147456 ft

Height of the water = √(128)/147456 ft

3 0
4 years ago
Other questions:
  • Singularity is an important property of a square matrix. This is also known as degenerate. What is the value of the determinant
    13·1 answer
  • Refrigerant 22 undergoes a constant-pressure process within a piston–cylinder assembly from saturated vapor at 3.5 bar to a fina
    8·1 answer
  • The work done by the system decreases the energy of the system. a)- True b)- False
    6·1 answer
  • The specific volume of a system consisting of refrigerant-134a at 1.0 Mpa is 0.01 m /kg. The quality of the R-134a is: (a) 12.6%
    15·1 answer
  • Find Re,Rc,R1 and R2!? Show your work.(hlp plz)
    7·1 answer
  • 4. Which type of duct undergoes more rigorous testing before it's labeled?
    12·1 answer
  • Mr. Blue lives in a blue house, Mrs. Pink lives in a pink house and Mr. Red lives in a red house. Who lives in the White House?
    11·1 answer
  • two students were talking student a was examining the lettuce leaves in a salad he was eating . he said, did you know im eating
    12·1 answer
  • Suppose we are given three boxes, Box A contains 20 light bulbs, of which 10 are defective, Box B contains 15 light bulbs, of wh
    12·1 answer
  • The first thing you should do is develop a ____________________ to determine what vehicle you can afford.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!