1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VLD [36.1K]
3 years ago
15

50 POINTS

Physics
2 answers:
strojnjashka [21]3 years ago
8 0

Answer:   A    Answers. Assuming that the terminal velocity doesn't change during the fall, then the kinetic energy would remain constant. However the terminal velocity decreases during the fall since the air becomes denser at lower altitudes.

Explanation:

What happens to the KE of an object when it slows down and heats up? - Quora. The kinetic energy goes down and the loss of the kinetic energy is through the production of heat energy. In real world this is due to friction, or an opposing force that decelerates the object, or a combination of both.

Rina8888 [55]3 years ago
5 0

Answer:

Kinetic energy stays the same

You might be interested in
By how much does the gravitational potential energy of a 54-kg pole vaulter change if her center of mass rises about 4.0 m durin
kodGreya [7K]
<span>the gravational potential energy of anything on the ground is zero. When calculating potential energy you take height in meters and multiply it by the mass of the object in kilograms and the acceleration of gravity to get a new unit called Joules. Any object at ground level has a potential energy of zero newtons becuase anything multiplied by zero is zero. An object with mass of 54 kg, 4 meters above the ground has a gravitatinal potential energy of 2116.8 Joules.</span>
8 0
3 years ago
Read 2 more answers
An electron is released from rest at a distance of 6.00 cm from a proton. If the proton is held in place, how fast will the elec
lana66690 [7]

Answer:

91.87 m/s

Explanation:

<u>Given:</u>

  • x = initial distance of the electron from the proton = 6 cm = 0.06 m
  • y = initial distance of the electron from the proton = 3 cm = 0.03 m
  • u = initial velocity of the electron = 0 m/s

<u>Assume:</u>

  • m = mass of an electron = 9.1\times 10^{-31}\ kg
  • v = final velocity of the electron
  • e = magnitude of charge on an electron = 1.6\times 10^{-19}\ C
  • p = magnitude of charge on a proton = 1.6\times 10^{-19}\ C

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.

Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.

\therefore \textrm{Kinetic energy change}= \textrm{Change in potential energy}\\\Rightarrow \dfrac{1}{2}m(v^2-u^2)= \dfrac{kpe}{y}-\dfrac{kpe}{x}\\\Rightarrow \dfrac{1}{2}m(v^2-(0)^2)= \dfrac{kpe}{0.03}-\dfrac{kpe}{0.06}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{3}-\dfrac{100kpe}{6}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{6}\\

\Rightarrow v^2= \dfrac{100kpe\times 2}{6m}\\\Rightarrow v^2= \dfrac{100kpe}{3m}\\\Rightarrow v^2= \dfrac{100\times 9\times 10^9\times 1.6\times 10^{-19}\times 1.6\times 10^{-19}}{3\times 9.1\times 10^{-31}}\\\Rightarrow v^2=8.44\times 10^3\\\Rightarrow v=91.87\ m/s\\

Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.

8 0
4 years ago
Help me with this please!
alexgriva [62]
Prototype
Chemistry
Technology
Troubleshooting
Hypothesis?
Observing
Variable
Hypothesis?
Engineer
System
3 0
3 years ago
Which term describes an educated guess about the outcome of an
bezimeni [28]

Answer:

Hypothesis

Explanation:

Refer to a trial solution to a problem as a hypothesis, often called an "educated guess" because it provides a suggested outcome based on the evidence.

5 0
3 years ago
Read 2 more answers
A glider with mass m = 0.230 kg sits on a frictionless horizontal air track, connected to a spring with force constant k = 4.50
loris [4]

Answer

given,

mass of glider = 0.23 Kg

spring constant = k = 4.50 N/m

spring stretched to 0.130 m

The springs potential energy =

 U = \dfrac{1}{2}kx^2

 U = \dfrac{1}{2}\times 4.5 \times 0.13^2

        U = 0.038 J

at x = 0,the only energy will be kinetic .

 \dfrac{1}{2}mv^2=0.038

 \dfrac{1}{2}\times 0.23 \times v^2=0.038

         v² = 0.3304

         v = 0.575 m/s

displacement of the glider

      using conservation of energy

 \dfrac{1}{2}mv^2=\dfrac{1}{2}kx^2

 x =v\sqrt{\dfrac{m}{k}}

 x =3\times \sqrt{\dfrac{0.23}{4.5}}

        x = 0.678 m

8 0
3 years ago
Other questions:
  • A car travels straight for 20 miles on a road that is 30° north of east. What is the east component of the car’s displacement to
    12·2 answers
  • How is amplitude changed in an instrument or tuning fork
    5·1 answer
  • ​What is the wavelength of an electron that has a kinetic energy of 0.50 MeV (relativistic)?
    11·1 answer
  • A beaker of ice and water is placed on a hot plate. is it a physical or chemical change
    11·1 answer
  • What is the maximum speed at which a car can safely travel around a circular track of radius 75.0 m if the coefficient of fricti
    14·1 answer
  • Is it true that acceleration occurs when there is a change in speed
    14·2 answers
  • Do heavier bowling balls go faster than lighter ones?
    11·2 answers
  • What is newton's gravitational constant (G)​
    9·1 answer
  • 4th question!!!!!!!!!!!!!!!!!
    9·2 answers
  • when two resistors are wired in series with a 12 v battery, the current through the battery is 0.31 a. when they are wired in pa
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!