Answer:yes they do
Step-by-step explanation:
This is known as Einstein's proof, not because he was the first to come up with it, but because he came up with it as a 15 year old boy.
Here the problem is justification step 2. The written equation
BC ÷ DC = BC ÷ AC
is incorrect, and wouldn't get us our statement 2, which is correct.
For similar triangles we have to carefully pair the corresponding parts to get our ratios right:
ABC ~ BDC means AB:BD = BC:DC = AC:BC so BC/DC=AC/BC.
Justification 2 has the final division upside down.
Answer:
Error of Andrew: Made incorrect factors from the roots
Step-by-step explanation:
Roots of the polynomial are: 3, 2 + 2i, 2 - 2i. According to the factor theorem, if a is a root of the polynomial P(x), then (x - a) is a factor of P(x). According to this definition:
(x - 3) , (x - (2 + 2i)) , (x - (2 - 2i)) are factors of the required polynomial.
Simplifying the brackets, we get:
(x - 3), (x - 2 - 2i), (x - 2 + 2i) are factors of the required polynomial.
This is the step where Andrew made the error. The factors will always be of the form (x - a) , not (x + a). Andrew wrote the complex factors in form of (x + a) which resulted in the wrong answer.
So, the polynomial would be:

We have been given the equation

It represents the number of people standing to catch a commuter train x hours after 5 A.M.
Now, in order to find the number of people in line at 7 a.m. , we need to substitute x= 2 in the above equation.

Therefore, the number of people in the line at 7 a.m. is 40
D id the correct option.
Answer:
[ - 2, - 7 ]
Step-by-step explanation: