A) Particles of gas move slower.
B) Gas changes to liquid.
C) The gas loses thermal energy.
D) Gas particles decrease.
Answer:
Explanation:
We have to start with the <u>reaction</u>:

We have the same amount of atoms on both sides, so, we can continue. The next step is to find the <u>number of moles</u> that we have in the 110.0 g of carbon dioxide, to this, we have to know the <u>atomic mass of each atom</u>:
C: 12 g/mol
O: 16 g/mol
Mg: 23.3 g/mol
If we take into account the number of atoms in the formula, we can calculate the <u>molar mass</u> of carbon dioxide:
In other words:
. With this in mind, we can calculate the moles:

Now, the <u>molar ratio</u> between carbon dioxide and magnesium carbonate is 1:1, so:

With the molar mass of
(
. With this in mind, we can calculate the <u>grams of magnesium carbonate</u>:
I hope it helps!
Answer:
HCl
Explanation:
<em>Choices:</em>
<em>CO: 28.01g/mol</em>
<em>NO₂: 46g/mol</em>
<em>CH₄: 16.04g/mol</em>
<em>HCl: 36.4g/mol</em>
<em>CO₂: 44.01g/mol</em>
<em />
It is possible to identify a substance finding its molar mass (That is, the ratio between its mass in grams and its moles). It is possible to find the moles of the gas using general ideal gas law:
PV = nRT
<em>Where P is pressure of gas 0.764atm; V its volume, 0.279L; n moles; R gas constant: 0.082atmL/molK and T its absolute temperature, 295.85K (22.7°C + 273.15).</em>
Replacing:
PV = nRT
PV / RT = n
0.764atm*0.279L / 0.082atmL/molKₓ295.85K = n
<em>8.786x10⁻³ = moles of the gas</em>
<em />
As the mass of the gas is 0.320g; its molar mass is:
0.320g / 8.786x10⁻³moles = 36.4 g/mol
Based in the group of answer choices, the identity of the gas is:
<h3>HCl</h3>
<em />
Answer:
Zinc nitrate gives white ppt. which dissolves in excess ammonium hydroxide and produce a colorless solution whereas lead nitrate gives a chalky white ppt. of lead hydroxide which doesnot dissolve.
Explanation:
Hope this helps :)