Answer:
0.15
Explanation:
Assuming the rope is horizontal, sum the forces in the y direction:
∑F = ma
N − mg = 0
N = mg
Sum the forces in the x direction:
∑F = ma
F − Nμ = ma
Substitute:
F − mgμ = ma
mgμ = F − ma
μ = (F − ma) / (mg)
Plug in values:
μ = (8.0 N − 2.0 kg × 2.5 m/s²) / (2.0 kg × 9.8 m/s²)
μ = 0.15
Answer:
0.2286 m, 0.686 m and 1,143 m
therefore we see that there is respect even where the intensity is minimal
Explanation:
Destructive interference to the two speakers is described by the expression
Δr = (2n +1) λ/2
where r is the distance, λ the wavelength and n an integer indicating the order of the interference
let's locate the origin on the left speaker
let's find the wavelength with the equation
v = λ f
λ = v / f
we substitute
Δr = (2n + 1) v / 2f
let's calculate for difference values of n
Δr = (2n +1) 343/(2 750)
Δr = (2n + 1) 0.2286
we locate the different values for a minimum of interim
n Δr (m)
0 0.2286
1 0.686
2 1,143
therefore we see that there is respect even where the intensity is minimal
Kinetic Energy:
Kinetic Energy is the energy of motion.
Mass:
Mass is the number of particles that a substance has
I think the correct graph would be
the THIRD GRAPH
Answer:
= 5.1 W
Explanation:
time (t) = 30 ms = 0.03 s
mass (m) = 560 g = 0.56 kg
initial velocity (U) = 0 m/s
final velocity (V) = 0.74 m/s
power = \frac{work done}{t} = \frac{f x d}{t} = f x v = m x a x v
m x a x v = m x \frac{V-U}{t} x \frac{V + U}{2}
m x \frac{V-U}{t} x \frac{V + U}{2} = 0.56 x \frac{0.74 - 0}{0.03} x \frac{0.74+0}{2}
= 5.1 W