Answer:
Placing a powder into a beaker that contains liquid, resulting the beaker to get hotter.
Explanation:
Physical property is something that you can observe that does not affect the mixture/solution/substance, and that includes temperature
The answer is c Yep Allll day
In order to solve this, we need to know the standard cell potentials of the half reaction from the given overall reaction.
The half reactions with their standard cell potentials are:
<span>2ClO−3(aq) + 12H+(aq) + 10e- = Cl2(g) + 6H2O(l)
</span><span>E = +1.47
</span>
<span>Br(l) + 2e- = 2Br-
</span><span>E = +1.065
</span>
We solve for the standard emf by subtracting the standard emf of the oxidation from the reducation, so:
1.47 - 1.065 = 0.405 V
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:

which is equivalent to

The question states that the second equation has an enthalpy, or "heat", of neutralization of
. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce
or
of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release
of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or
of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of
.
The solution has a specific heat of
. The solution thus have a heat capacity of
. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of
, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy.
are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.
Answer:
5 moles of Fe
Explanation:
The equation of the reaction is;
2 Al(s) + Fe 2O 3(s) --> 2Fe (s) + Al 2O 3 (s)
Now;
1 mole of Fe2O3 require 2 moles of Al
3 moles of Fe2O3 requires 3 × 2/1 = 6 moles of Al
Hence Al is the limiting reactant.
If 2 moles of Al yields 2 moles of Fe
5 moles of Al yields 5 × 2/2 = 5 moles of Fe