Offspring are more rapidly reproduced
Answer:
<u>2</u><u>1</u><u>.</u><u>0</u><u>9</u><u> </u><u>g</u><u> </u><u>of</u><u> </u><u>AgCl</u>
Explanation:
Hopefully the picture is clear and the method is understandable.
For more information go to
https://socratic.org/questions/5631d10b11ef6b4609a78ee2
Answer : Both solutions contain
molecules.
Explanation : The number of molecules of 0.5 M of sucrose is equal to the number of molecules in 0.5 M of glucose. Both solutions contain
molecules.
Avogadro's Number is
=
which represents particles per mole and particles may be typically molecules, atoms, ions, electrons, etc.
Here, only molarity values are given; where molarity is a measurement of concentration in terms of moles of the solute per liter of solvent.
Since each substance has the same concentration, 0.5 M, each will have the same number of molecules present per liter of solution.
Addition of molar mass for individual substance is not needed. As if both are considered in 1 Liter they would have same moles which is 0.5.
We can calculate the number of molecules for each;
Number of molecules =
;
∴ Number of molecules =
which will be = 
Thus, these solutions compare to each other in that they have not only the same concentration, but they will have the same number of solvated sugar molecules. But the mass of glucose dissolved will be less than the mass of sucrose.
Answer:
H2
Explanation:
Critical temperature is the temperature above which gas cannot be liquefied, regardless of the pressure applied.
Critical temperature directly depends on the force of attraction between atoms, it means stronger the force of higher will be the critical temperature. So, from the given options H2 should have the highest critical temperature because of high attractive forces due to H bonding.
Hence, the correct option is H2.
Bioaccumulation refers to the accumulation of chemicals in a living organism. The compound or chemical accumulates at a rate faster than it is being metabolized or excreted by the organism. Chemicals bioaccumulate by binding to the proteins and fats in an organism while others bioaccumulate through the repeated consumption of contaminated organisms.
Pesticides containing chemicals that dissolve easily in fat but not in water tend to bioaccumulate. Pesticides that contain chemicals that can easily be metabolized by organisms do not bioaccumulate. In summary, the nature of the chemical used in pesticides and the capability of organisms to metabolize the said chemicals can dictate whether it will bioaccumulate or not.