Answer:
103239.89 days
Explanation:
Kepler's third law states that the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
a³ / T² = 7.496 × 10⁻⁶ (a.u.³/days²)
where,
a is the distance of the semi-major axis in a.u
T is the orbit time in days
Converting the mean distance of the new planet to astronomical unit (a.u.)
1 a.u = 9.296 × 10⁷ miles

Substituting the values into Kepler's third law equation;
(days)²

T = 103239.89 days
An estimate time T for the new planet to travel around the sun in an orbit is 103239.89 days
Answer:
MISSING DATA, SPEED AT WHICH IT WAS LAUNCHED OR INITIAL
DISTANCE THAT REACHED UPWARDS
Explanation:
ANYWAY I LEAVE YOU THE LINK, AUÍ AHY MORE INFORMATION ON THE
SUBJECT.
https://gscourses.thinkific.com
<span>No sé una palabra que acaba de decir, ¿se puede decir en inglés por favor ???</span>
We will first convert all units to meters and then solve the problem.
We are given that:
1000 mm = 1 m
120 mm = ?? meters
using cross multiplication:
120 mm = (120*1) / 1000 = 0.12 m
Now, when the two objects are placed over each other, their total height is the result of summation of both heights, therefore:
total height = 0.12 + 1.5 = 1.62 m
Based on the above calculations, the correct choice is:
b) 1.62 m
<h3><u>Answer;</u></h3>
travel through solids
P waves and S waves are alike in that they<u> both travel through solids</u>.
<h3><u>Explanation;</u></h3>
- <em><u>P-waves and S-waves are types of seismic waves.</u></em> These waves are produced during an earthquake, that transmit energy released around the earth.
- <u><em>P-waves travel the fastest and also travel through solids, liquids and gases. </em></u>They are push and pull waves and thus they cause rock particles to move back and forth.
- <u><em>S-wave son the other hand arrive at a given point after the p-waves. They do not travel as fast as P-waves. They travel through solids but not in liquids and gases.</em></u> S -waves cause the rocks to move side to side.