1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
2 years ago
10

Which characteristics are possessed by a vector quantity but not by a scalar quantity?

Physics
1 answer:
Nitella [24]2 years ago
4 0
B) Magnitude and direction
You might be interested in
A green light is submerged 2.70 m beneath the surface of a liquid with an index of refraction 1.31. What is the radius of the ci
Anettt [7]

Answer:

The radius is  r = 3.1905 \ m

Explanation:

From the question we are told that

        The  distance  beneath the liquid  is  d =  2.70 \ m

        The refractive index of the liquid is  n_i  =  1.31

Now the critical value is mathematically represented as

         \theta =  sin ^{-1} [\frac{1}{n_i} ]

substituting values

         \theta =  sin ^{-1} [\frac{1}{131} ]

         \theta  =  49.76^o

Using SOHCAHTOA rule we have that

         tan \theta =  \frac{ r}{d}

=>     r =  d * tan \theta

substituting values  

        r =  2.7 * tan (49.76)

        r = 3.1905 \ m

         

5 0
3 years ago
3. Identify the structures of the skin by the labels A through G below
ioda
I need help to I have a big test and I need help so bad
4 0
3 years ago
An electric dipole is formed from ± 5.0 nC point charges spaced 3.0 mm apart. The dipole is centered at the origin, oriented alo
Ymorist [56]

Answer:

The electric field strength at point (x,y) = ( 20 mm ,0cm) is =<u>16321.0769 N/C</u>

The electric field strength at point (x,y) = (0cm, 20 mm) is =<u>35321.58999 N/C</u>

Explanation:

Question: What is the electric field strength at point (x,y) = ( 20 mm ,0cm)?

Answer:

The electric field at any given point of the dipole is given as:

E= (KP) ÷ (r^2 + a^2)^3/2

Where:

K = 9x10^9 Nm^2/c^2 (coloumb constant)

P = (0.003) (5x10^-9c) which is the movement of the dipole

(0.003) is arrived at when mm is converted to m. 3.0 mm space apart was converted to a meter.

r= the point, in the question above is 20mm = 0.02m

Now, the electric field, E can be calculated by putting the values in the formula above:

E = (KP) ÷ (r^2 + a^2)^3/2

= (9x10^9 Nm^2/c^2) (0.003 m) (5x10^-9c) ÷ [ (0.02m)^2 + (0.003)^2]^3/2

= 0.135 ÷ (8.271513x10^-6)

=<u>16321.0769 N/C</u>

 Question: What is the electric field strength at point (x,y) = (0cm, 20 mm )?

Answer:

Here, the electric field, E= 2krp ÷ (r^2 - a^2)^2

E= 2 (9x10^9 Nm^2/c^2) (0.02m) (0.003 m) (5x10^-9c) ÷ [(0.02m)^2 - (0.003)^2]^2

= 0.0054 ÷  0.000000152881

=<u>35321.58999 N/C</u>

8 0
2 years ago
A solid cylinder of mass M = 45 kg, radius R = 0.44 m and uniform density is pivoted on a frictionless axle coaxial with its sym
user100 [1]

Answer:

w_f = 1.0345 rad/s

Explanation:

Given:

- The mass of the solid cylinder M = 45 kg

- Radius of the cylinder R = 0.44 m

- The mass of the particle m = 3.6 kg

- The initial speed of cylinder w_i = 0 rad/s

- The initial speed of particle V_pi = 3.3 m/s

- Mass moment of inertia of cylinder I_c = 0.5*M*R^2

- Mass moment of inertia of a particle around an axis I_p = mR^2

Find:

- What is the magnitude of its angular velocity after the collision?

Solution:

- Consider the mass and the cylinder as a system. We will apply the conservation of angular momentum on the system.

                                     L_i = L_f

- Initially, the particle is at edge at a distance R from center of cylinder axis with a velocity V_pi = 3.3 m/s contributing to the initial angular momentum of the system by:

                                    L_(p,i) = m*V_pi*R

                                    L_(p,i) = 3.6*3.3*0.44

                                    L_(p,i) = 5.2272 kgm^2 /s

- While the cylinder was initially stationary w_i = 0:

                                    L_(c,i) = I*w_i

                                    L_(c,i) = 0.5*M*R^2*0

                                    L_(c,i) = 0 kgm^2 /s

The initial momentum of the system is L_i:

                                    L_i = L_(p,i) + L_(c,i)

                                    L_i = 5.2272 + 0

                                    L_i = 5.2272 kg-m^2/s

- After, the particle attaches itself to the cylinder, the mass and its distribution around the axis has been disturbed - requires an equivalent Inertia for the entire one body I_equivalent. The final angular momentum of the particle is as follows:

                                   L_(p,f) = I_p*w_f

- Similarly, for the cylinder:

                                   L_(c,f) = I_c*w_f

- Note, the final angular velocity w_f are same for both particle and cylinder. Every particle on a singular incompressible (rigid) body rotates at the same angular velocity around a fixed axis.

                                  L_f = L_(p,f) + L_(c,f)

                                  L_f = I_p*w_f + I_c*w_f

                                  L_f = w_f*(I_p + I_c)

-Where, I_p + I_c is the new inertia for the entire body = I_equivalent that we discussed above. This could have been determined by the superposition principle as long as the axis of rotations are same for individual bodies or parallel axis theorem would have been applied for dissimilar axes.

                                  L_i = L_f

                                  5.2272 = w_f*(I_p + I_c)

                                  w_f =  5.2272/ R^2*(m + 0.5M)

Plug in values:

                                  w_f =  5.2272/ 0.44^2*(3.6 + 0.5*45)

                                  w_f =  5.2272/ 5.05296

                                  w_f = 1.0345 rad/s

5 0
3 years ago
The amount of heat energy required to raise the temperature of a unit mass of a material one degree is
charle [14.2K]
The amount of heat energy required to raise the temperature of a unit mass of a material to one degree is called D. its heat capacity.

The relationship of the heat when applied to the object and the change in temperature of the object when heat is being applied is directly proportional to each other. This means that when heat is applied to the object, the temperature of the object increases and when heat is not applied to the object, the temperature of the object decreases.
5 0
3 years ago
Other questions:
  • When released , what is the kinetic energy of the 1c charge of the preceding problem if it flies past its starting position?
    11·1 answer
  • An object acted on by three forces moves with constant velocity. One force acting on the object is in the positive xx direction
    14·1 answer
  • Why is a hollow pipe stronger than a solid pipe?
    6·1 answer
  • In a Broadway performance, an 83.0-kg actor swings from a R = 3.90-m-long cable that is horizontal when he starts. At the bottom
    7·1 answer
  • Which of the following represents a case in which you are not accelerating? -Driving 60 miles per hour around a curve -Going fro
    15·1 answer
  • If you want to increase the acceleration of a baseball when you throw it, what must you increase to make this happen?
    8·1 answer
  • A copper wire that is 1 mm thick and 30 cm long is connected to a 1 V battery.
    6·1 answer
  • A 5.2 kg cat and a 2.5 kg bowl of tuna fish are at opposite ends of the 4.0-m-long seesaw. How far to the left of the pivot must
    11·1 answer
  • All of the following are examples of positive direction except:
    12·1 answer
  • Are the stack temperature and oxygen reasonable for these operating conditions? if not, what oxygen and stack temperature would
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!