1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
3 years ago
15

Tarzan, whose mass is 94 kg, is hanging at rest from a tree limb. Then he lets go and falls to the ground. Just before he lets g

o, his center of mass is at a height 2.8 m above the ground and the bottom of his dangling feet are at a height 2.0 above the ground. When he first hits the ground he has dropped a distance 2.0, so his center of mass is (2.8 - 2.0) above the ground. Then his knees bend and he ends up at rest in a crouched position with his center of mass a height 0.5 above the ground.(a) Consider the point particle system. What is the speed v at the instant just before Tarzan's feet touch the ground? v = _______ m/s. (b) Consider the extended system. What is the net change in internal energy for Tarzan from just before his feet touch the ground to when he is in the crouched position?
Physics
1 answer:
zalisa [80]3 years ago
4 0

Answer:

(a) 6.26 m/s

(b) ‭-2,118.76 J

Explanation:

Here we have

Tarzan's mass, m = 94 kg

Height of feet above ground, h₁ = 2.0 m

Height of center of mass above ground = 2.8 m

Height of center of mass on the ground, h₂ = 2.8 - 2.0 = 0.8 m

Height of center of mass in the crouched position, h₃ = 0.5 m

(a) The speed at the instant just before Tarzan's feet touches the ground is given by;

v² = u² + 2·g·h₁

v = Speed at the instant just before Tarzan's feet touches the ground

u = Initial speed = 0 m/s while hanging from the tree

g = Acceleration due to gravity

Therefore, v² =  2·g·h₁ = 2 × 9.8 × 2 = 39.2 m²/s²

∴ v = √(39.2 m²/s²) = 6.26 m/s

(b) Here we have

Just before Tarzan's feet touches the ground internal energy is given by;

Initial Internal energy = K.E. + P.E. = m·g·h₂+ 0.5·m·v²

= 94 × 9.8 × 0.8 + 0.5 × 94 × 39.2 = ‭2,579.36 J

When in the crouched position, the final internal energy is given by;

m·g·h₃ = 94 × 9.8 × 0.5 = 460.6 J

Therefore net change in internal energy, ΔU is given by

ΔU = Final internal energy - Initial internal energy

ΔU = 460.6 J - 2,579.36 J  = ‭-2,118.76 J.

You might be interested in
Define energy and provide examples of potential and kinetic energy
In-s [12.5K]

Energy is the capacity for doing work..

Kinetic energy - Moving car

Potential energy - flowing water up the hill

6 0
3 years ago
1. 1500j of work was done to move a box 20m. What force was applied to the box ?
Fantom [35]

Answer:

1. 75N

2. 67,983 J (=67.98 kJ)

Explanation:

1. Work = Force x Distance

we are given that Work = 1,500J and Distance = 20m

hence,

Work = Force x Distance

1,500 = Force x 20

Force = 1,500 ÷ 20 = 75N

2. Potential Energy, PE = mass x gravity x change in height

we are given that mass = 165 kg and change in height = 42m

assuming that gravity, g = 9.81 m/s²

Potential Energy, PE = mass x gravity x change in height

Potential Energy, PE = 165 x 9.81 x 42 = 67,983 J (=67.98 kJ)

4 0
3 years ago
The atmosphere of Neptune and Uranus have a blue color because of which gas?
AURORKA [14]
The gas that gives Neptune and Uranus its amazing blue color is methane 
7 0
3 years ago
Read 2 more answers
Why do planets speed up as they get closer to the sun?:
Serggg [28]

Answer:

C

Explanation:

Gravity is the main reason that make our planets to pull each other

5 0
2 years ago
Three small balls of the same size but different masses are hung side-by-side in parallel on the strings of same length. They to
andrey2020 [161]

Answer:

m1/6 ( c )

Explanation:

since all the balls starts having the same momentum after the two collisions we will apply the principal of conservation of energy

After first collision

m1v = m1v1 + m2v2 --- ( 1 )

After second collision

m2v2 = m2v2 + m3v3   ---- ( 2 )

combining equations 1 and 2

m1v = m1v1 + m2v2 + m3v3  ----- ( 3 )

All balls moving at the same momentum ( p ) = m1v1 = m2v2 = m3v3

note ; 3p = m1v ∴ m3 = \frac{m1v}{3v3}  -----  ( 4 )

applying conservation of energy

3v = v1 + v2 + v3 ------- ( 5 )

also 3m1v1 = m1v = v1 = v/3 =

v2 + v3 = 8/3 v ----- ( 6 )

next eliminate V3 for equation 6 by applying conservation of energy and momentum

m1 =  2m2 ------ ( 7 )

now using p1 = p2 = m1v1 = 1/2 m1v1  hence v2 = 2v1  where v1 = 1/3 v

hence ; v2 = 2/3 v ------- ( 8 )

solving with equation 6 and 8

v3 = 2v ------ ( 9 ) ∴  v/v3 = 1/2 ---- ( 10 )

solving with equation 9 and 10

m3 = m1/3 * 1/2 = m1/6

8 0
3 years ago
Other questions:
  • Which of the following best describes alternating current? current that increases and decreases in temperature current that cons
    13·2 answers
  • if a bowling ball and a golf ball or move at the same velocity, which one would have more momentum? Why?
    8·2 answers
  • A ball rolls of a desk a speed of 3.0m/s and lands 0.40 seconds later
    15·1 answer
  • A physician has a patient that he believes has had foul play. What type of autopsy would the physician request?
    9·1 answer
  • The two basic properties of matter are _
    7·2 answers
  • What determines whether a resource considered renewable?
    13·1 answer
  • Advantages of outsourcing project work may likely include all of the following EXCEPT:
    5·1 answer
  • calcular la longitud de un péndulo que oscila a 10 Hz en santa fe de bogota, sabiendo que en esta ciudad la aceleracion de la gr
    5·1 answer
  • (11%) Problem 5: A submarine is stranded on the bottom of the ocean with its hatch 25 m below the surface. In this problem, assu
    6·2 answers
  • Temporary magnets are made up of _______.​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!