1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
3 years ago
15

Tarzan, whose mass is 94 kg, is hanging at rest from a tree limb. Then he lets go and falls to the ground. Just before he lets g

o, his center of mass is at a height 2.8 m above the ground and the bottom of his dangling feet are at a height 2.0 above the ground. When he first hits the ground he has dropped a distance 2.0, so his center of mass is (2.8 - 2.0) above the ground. Then his knees bend and he ends up at rest in a crouched position with his center of mass a height 0.5 above the ground.(a) Consider the point particle system. What is the speed v at the instant just before Tarzan's feet touch the ground? v = _______ m/s. (b) Consider the extended system. What is the net change in internal energy for Tarzan from just before his feet touch the ground to when he is in the crouched position?
Physics
1 answer:
zalisa [80]3 years ago
4 0

Answer:

(a) 6.26 m/s

(b) ‭-2,118.76 J

Explanation:

Here we have

Tarzan's mass, m = 94 kg

Height of feet above ground, h₁ = 2.0 m

Height of center of mass above ground = 2.8 m

Height of center of mass on the ground, h₂ = 2.8 - 2.0 = 0.8 m

Height of center of mass in the crouched position, h₃ = 0.5 m

(a) The speed at the instant just before Tarzan's feet touches the ground is given by;

v² = u² + 2·g·h₁

v = Speed at the instant just before Tarzan's feet touches the ground

u = Initial speed = 0 m/s while hanging from the tree

g = Acceleration due to gravity

Therefore, v² =  2·g·h₁ = 2 × 9.8 × 2 = 39.2 m²/s²

∴ v = √(39.2 m²/s²) = 6.26 m/s

(b) Here we have

Just before Tarzan's feet touches the ground internal energy is given by;

Initial Internal energy = K.E. + P.E. = m·g·h₂+ 0.5·m·v²

= 94 × 9.8 × 0.8 + 0.5 × 94 × 39.2 = ‭2,579.36 J

When in the crouched position, the final internal energy is given by;

m·g·h₃ = 94 × 9.8 × 0.5 = 460.6 J

Therefore net change in internal energy, ΔU is given by

ΔU = Final internal energy - Initial internal energy

ΔU = 460.6 J - 2,579.36 J  = ‭-2,118.76 J.

You might be interested in
(a) An elevator of mass m moving upward has two forces acting on it: the upward force of tension in the cable and the downward f
Katen [24]

Answer: T is greater

Explanation:

Since the elevator is moving against gravity more work will be done on the rope

T= m(g+a)

8 0
3 years ago
Read 2 more answers
Two identical small metal spheres with q1 > 0 and |q1| > |q2| attract each other with a force of magnitude 81 mN when sepa
Gekata [30.6K]

Answer:

Explanation:

Check the attachment for solution

8 0
3 years ago
A 12.0-g plastic ball is dropped from a height of 2.50 m. Just as it strikes the floor, it is moving at a speed of 3.20 m/s. How
nalin [4]

Answer:

0·233 J

Explanation:

Given

Mass of the ball = 0·012 kg

Initially the ball is at a height of 2·5 m

As initially the ball is dropped, it's initial velocity will be equal to 0

Therefore initially it has zero kinetic energy and has only potential energy

∴ Initially total mechanical energy of the ball = potential energy of the ball

Initial potential energy of the ball = m × g × h

where

m is the mass of the ball

g is the acceleration due to gravity

h is the height of the ball

∴ Potential energy = 0·012 × 9·8 × 2·5 = 0·294 J

Velocity of the ball after striking the floor = 3·2 m/s

After striking the floor, the total mechanical energy = kinetic energy just after striking the floor

Kinetic energy = 0·5 × m × v²

where m is the mass of the ball

v is the velocity of the ball

∴ Kinetic energy of the ball = 0·5 × 0·012 × 3·2² = 0·061 J

Mechanical energy that is lost = 0·294 - 0·061 = 0·233 J

∴ Mechanical energy that the ball lost during its fall = 0·233 J

6 0
3 years ago
A balloon is filled with helium at a pressure of 2.4 x 105 Pa. The balloon is at a
garri49 [273]
1)
p = 2.4 * 10^5 Pa
T = 18° C + 273.15 = 291.15 k
r = 0.25 m => V = [4/3]π(r^3) = [4/3]π(0.25m)^3 = 0.06545 m^3 = 65.45 L

Use ideal gas equation: pV = nRT => n = pV / RT = [2.4*10^5 Pa * 0.06545 m^3] / [8.31 J/k*mol * 291.15k] = 6.492 mol

Avogadro number = 1 mol = 6.022 * 10^23 atoms

Number of atoms = 6.492 mol * 6.022 *10^23 atom/mol = 39.097 * 10^23 atoms = 3.91 * 10^24 atoms

2) Double atoms => double volume

V2 / V1 = r2 ^3 / r1/3

2 = r2 ^3 / r1 ^3 => r2 ^3 = 2* r1 ^3

r2 = [∛2]r1

The factor is ∛2
5 0
3 years ago
Compounds formed from the attraction of oppositely charged ions are called
Readme [11.4K]

Answer:

Ionic bond

Explanation:

Also called electrovalent bond, type of linkage formed from the electrostatic attraction between oppositely charged ions in a chemical compound.

Hope this helps! brainliest welcomed! :)

8 0
3 years ago
Other questions:
  • Question 14 (1 point)
    7·1 answer
  • 15. A volleyball player who weighs 650 Newtons jumps 0.500 meters vertically off the floor. What is her kinetic energy just befo
    14·1 answer
  • Why are the spheres representing nitrogen and oxygen different colors
    8·1 answer
  • There is a girl pushing on a large stone sphere. The sphere has a mass of 8200 kgand a radius of 90 cm and floats with nearly ze
    15·1 answer
  • At the temperature at which we live, earth's core is solid or liquid?
    11·1 answer
  • In recent years, astronomers have found planets orbiting nearby stars that are quite different from planets in our solar system.
    10·1 answer
  • What is the resultant force acting on an object? The first force is 45 N West and the second is 23 N East.
    6·1 answer
  • What causes moon phases, rotation or revolution
    7·1 answer
  • A track star runs 100 meters in 10 seconds. What is the star's average speed?
    9·2 answers
  • What quantities belong in cells X and Y?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!