1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
3 years ago
15

Tarzan, whose mass is 94 kg, is hanging at rest from a tree limb. Then he lets go and falls to the ground. Just before he lets g

o, his center of mass is at a height 2.8 m above the ground and the bottom of his dangling feet are at a height 2.0 above the ground. When he first hits the ground he has dropped a distance 2.0, so his center of mass is (2.8 - 2.0) above the ground. Then his knees bend and he ends up at rest in a crouched position with his center of mass a height 0.5 above the ground.(a) Consider the point particle system. What is the speed v at the instant just before Tarzan's feet touch the ground? v = _______ m/s. (b) Consider the extended system. What is the net change in internal energy for Tarzan from just before his feet touch the ground to when he is in the crouched position?
Physics
1 answer:
zalisa [80]3 years ago
4 0

Answer:

(a) 6.26 m/s

(b) ‭-2,118.76 J

Explanation:

Here we have

Tarzan's mass, m = 94 kg

Height of feet above ground, h₁ = 2.0 m

Height of center of mass above ground = 2.8 m

Height of center of mass on the ground, h₂ = 2.8 - 2.0 = 0.8 m

Height of center of mass in the crouched position, h₃ = 0.5 m

(a) The speed at the instant just before Tarzan's feet touches the ground is given by;

v² = u² + 2·g·h₁

v = Speed at the instant just before Tarzan's feet touches the ground

u = Initial speed = 0 m/s while hanging from the tree

g = Acceleration due to gravity

Therefore, v² =  2·g·h₁ = 2 × 9.8 × 2 = 39.2 m²/s²

∴ v = √(39.2 m²/s²) = 6.26 m/s

(b) Here we have

Just before Tarzan's feet touches the ground internal energy is given by;

Initial Internal energy = K.E. + P.E. = m·g·h₂+ 0.5·m·v²

= 94 × 9.8 × 0.8 + 0.5 × 94 × 39.2 = ‭2,579.36 J

When in the crouched position, the final internal energy is given by;

m·g·h₃ = 94 × 9.8 × 0.5 = 460.6 J

Therefore net change in internal energy, ΔU is given by

ΔU = Final internal energy - Initial internal energy

ΔU = 460.6 J - 2,579.36 J  = ‭-2,118.76 J.

You might be interested in
Help please I have to turn this in tonight!!
inna [77]

Answer:

True

Explanation:

i searched it up and well this thing is making me do it up till 20 characters long so yea

3 0
3 years ago
Read 2 more answers
If m=120kg and a=15m/s2, what is the force
Scorpion4ik [409]

Answer:

F= 1800N

Explanation:

the equation for force is F= ma

so plug in the numbers: F= (120)(15)

solve this to get F= 1800N

tip: don't forget to add the units when writing your answer :)

6 0
3 years ago
Can help me by awnsering this quetion??<br>i need the awnser directly!!
MrMuchimi
Smooth, rough

Less, more

Fast, slow
4 0
3 years ago
Read 2 more answers
After the box comes to rest at position x1, a person starts pushing the box, giving it a speed v1. when the box reaches position
KiRa [710]

As we know by work energy theorem

total work done = change in kinetic energy

so here we can say that wok done on the box will be equal to the change in kinetic energy of the system

W_p = KE_f - KE_i

initial the box is at rest at position x = x1

so initial kinetic energy will be ZERO

at final position x = x2 final kinetic energy is given as

KE_f = \frac{1}{2}mv_1^2

now work done is given as

W_p = \frac{1}{2}mv_1^2 - 0

so we can say

W_p = \frac{1}{2}mv_1^2

so above is the work done on the box to slide it from x1 to x2

3 0
3 years ago
Marking branliest!
Ivenika [448]

Answer:

D)evaluating a solution

Explanation:

In this scenario, the next logical step would be evaluating a solution. This is because Jasper and Samantha have already identified the problem/need which is that the robot needs to be able to move a 10-gram weight at least 2 meters and turn in a circle. They also designed and implemented a solution because they have already built the robot. Therefore the only step missing is to evaluate and make sure that the robot they built is able to complete the requirements.

7 0
3 years ago
Other questions:
  • A baseball player catches a ball that has a mass of .25 kg that was traveling at 40 m/s. The ball came to stop in her baseball g
    12·1 answer
  • This design enabled them to control for several factors. The total area of the patch plus the corridor, or the patch plus the wi
    8·1 answer
  • 4
    8·1 answer
  • Suppose an astronaut were to visit a planet where the force of gravity is half that of Earth. His mass on that planet would be:
    7·1 answer
  • The earth attracts an apple with a force of 15 Newton. taking this as an action force, how much is reaction force? who accepts t
    12·2 answers
  • Ms. Reitman's scooter starts from rest and the final velocity is
    9·1 answer
  • A wooden block is let go from a height of 5.80 m. What is the velocity of the block just before it hits the ground?
    10·1 answer
  • Como se juega batminton?<br> Explica con tus propias palabras
    6·1 answer
  • 6. Two light bulbs are designed for use at 120 V and are rated at 75 W and 150 W. Which light bulb has the greater filament resi
    12·1 answer
  • A student left a bar of chocolate in the sun on a hot day. As the chocolate melted, which property changed?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!