Answer:
e.Fire resistance,Inexpensive,Non-toxic.
Explanation:
Desirable hydraulic property of fluid as follows
1. Good chemical and environment stability
2. Low density
3. Ideal viscosity
4. Fire resistance
5. Better heat dissipation
6. Low flammability
7. Good lubrication capability
8. Low volatility
9. Foam resistance
10. Non-toxic
11. Inexpensive
12. Demulsibility
13. Incompressibility
So our option e is right.
Answer:
Taking as a basis of calculation 100 mol of gas leaving the conversion reactor, draw andcompletely label a flowchart of this process. Then calculate the moles of fresh methanol feed,formaldehyde product solution, recycled methanol, and absorber off-gas, the kg of steamgenerated in the waste-heat boiler, and the kg of cooling water fed to the heat exchangerbetween the waste-heat boiler and the absorber. Finally, calculate the heat (kJ) that must beremoved in the distillation column overhead condenser, assuming that methanol enters as asaturated vapor at 1 atm and leaves as a saturated liquid at the same pressure.
1
SEE ANSWER
Explanation:
Answer:
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.
Step-by-step solution:
Step 1 of 5
Given data:-
The velocity of water is .
The water flow rate is.
Answer:
Q=36444.11 Btu
Explanation:
Given that
Initial temperature = 60° F
Final temperature = 110° F
Specific heat of water = 0.999 Btu/lbm.R
Volume of water = 90 gallon
Mass = Volume x density

Mass ,m= 90 x 0.13 x 62.36 lbm
m=729.62 lbm
We know that sensible heat given as
Q= m Cp ΔT
Now by putting the values
Q= 729.62 x 0.999 x (110-60) Btu
Q=36444.11 Btu
Answer:
a)R= sqrt( wt³/12wt)
b)R=sqrt(tw³/12wt)
c)R= sqrt ( wt³/12xcos45xwt)
Explanation:
Thickness = t
Width = w
Length od diagonal =sqrt (t² +w²)
Area of raectangle = A= tW
Radius of gyration= r= sqrt( I/A)
a)
Moment of inertia in the direction of thickness I = w t³/12
R= sqrt( wt³/12wt)
b)
Moment of inertia in the direction of width I = t w³/12
R=sqrt(tw³/12wt)
c)
Moment of inertia in the direction of diagonal I= (w t³/12)cos 45=( wt³/12)x 1/sqrt (2)
R= sqrt ( wt³/12xcos45xwt)