An electromagnet is a made coil associated with a ferromagnetic core. This way, the strength of the magnet is controlled by the input current. A solenoid is a simple shape used in magnetostatics or magnetics. ... A solenoid is a cylindrical coil of wire whose diameter is small compared to its length.
Answer:
Hello there, Please follow the step by step explanations for answer.
Explanation:
Hello there, Please follow the step by step explanations for answer.
Ex1 ( A):
it depends on n
=> O(n)
2.)
O(n/2) which is equal to O(n)
3.)O(n^2)
4.)O(2n) ==> O(n)
5.)O(n^3)
Also, see file attachment on this question for more clarity. Thanks and all the best.
Answer:
The Space Needle is a cut away with minimal residual deflection due to load transfer.
Answer:
0.0297M^3/s
W=68.48kW
Explanation:
Hello! To solve this problem, we must first find all the thermodynamic properties at the input (state 1) and the compressor output (state 2), using the thermodynamic tables
Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
state 1
X=quality=1
T=-26C
density 1=α1=5.27kg/m^3
entalpy1=h1=234.7KJ/kg
state 2
T2=70
P2=8bar=800kPa
density 2=α2=31.91kg/m^3
entalpy2=h2=306.9KJ/kg
Now to find the flow at the outlet of the compressor, we remember the continuity equation that states that the mass flow is equal to the input and output.
m1=m2
(Q1)(α1)=(Q2)(α2)

the volumetric flow rate at the exit is 0.0297M^3/s
To find the power of the compressor we use the first law of thermodynamics that says that the energy that enters must be equal to the energy that comes out, in this order of ideas we have the following equation
W=m(h2-h1)
m=Qα
W=(0.18)(5.27)(306.9-234.7)
W=68.48kW
the compressor power is 68.48kW
Answer:
Glycogen is the primary energy source for muscle and liver cells.
Explanation:
Glycogen is a readily mobilized storage form of glucose. It is a very large, branched polymer of glucose residues that can be broken down to yield glucose molecules when energy is needed. Most of the glucose residues in glycogen are linked by α-1,4-glycosidic bonds. Branches at about every tenth residue are created by α-1,6-glycosidic bonds.
Glycogen is not as reduced as fatty acids are and consequently not as energy rich. Why do animals store any energy as glycogen? Why not convert all excess fuel into fatty acids? Glycogen is an important fuel reserve for several reasons. The controlled breakdown of glycogen and release of glucose increase the amount of glucose that is available between meals. Hence, glycogen serves as a buffer to maintain blood-glucose levels. Glycogen's role in maintaining blood-glucose levels is especially important because glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity.