Answer:
Always make sure that you are properly protected and that it is all clear to be operated on.
Answer:
f=1.59 Hz
Explanation:
Given that
Simple undamped system means ,system does not consists any damper.If system consists damper then it is damped spring mass system.
Velocity = 100 mm/s
Maximum amplitude = 10 mm
We know that for a simple undamped system spring mass system

now by putting the values

100 = ω x 10
ω = 10 rad/s
We also know that
ω=2π f
10 = 2 x π x f
f=1.59 Hz
So the natural frequency will be f=1.59 Hz.
Answer:
No.
Explanation:
The Coefficient of Performance of the reversible heat pump is determined by the Carnot's cycle:



The power required to make the heat pump working is:


The heat absorbed from the exterior air is:


According to the Second Law of Thermodynamics, the entropy generation rate in a reversible cycle must be zero. The formula for the heat pump is:




Which contradicts the reversibility criterion according to the Second Law of Thermodynamics.
The language was most likely to have been used is HTML as it help the designer to choose a font size and color for a web page.
<h3>What is HTML a programming language? </h3>
HTML is known as HyperText Markup Language. This is known to be a computer code that is often employed to put together or structure a web page and all of its content.
Note that The language was most likely to have been used is HTML as it help the designer to choose a font size and color for a web page Because HTML is regarded as the markup language that is often used to edit web pages.
Learn more about HTML from
brainly.com/question/4056554
#SPJ1
Answer:
<em>Heat rejected to cold body = 3.81 kJ</em>
Explanation:
Temperature of hot thermal reservoir Th = 1600 K
Temperature of cold thermal reservoir Tc = 400 K
<em>efficiency of the Carnot's engine = 1 - </em>
<em> </em>
eff. of the Carnot's engine = 1 -
eff = 1 - 0.25 = 0.75
<em>efficiency of the heat engine = 70% of 0.75 = 0.525</em>
work done by heat engine = 2 kJ
<em>eff. of heat engine is gotten as = W/Q</em>
where W = work done by heat engine
Q = heat rejected by heat engine to lower temperature reservoir
from the equation, we can derive that
heat rejected Q = W/eff = 2/0.525 = <em>3.81 kJ</em>