Answer:
The work furnished by the compressor is 
The minimum work required for the state to change is 
Explanation:
The explanation to these solution is on the first, second , third and fourth uploaded image respectively
Answer:
a) V = 0.354
b) G = 25.34 GPA
Explanation:
Solution:
We first determine Modulus of Elasticity and Modulus of rigidity
Elongation of rod ΔL = 1.4 mm
Normal stress, δ = P/A
Where P = Force acting on the cross-section
A = Area of the cross-section
Using Area, A = π/4 · d²
= π/4 · (0.0020)² = 3.14 × 10⁻⁴m²
δ = 50/3.14 × 10⁻⁴ = 159.155 MPA
E(long) = Δl/l = 1.4/600 = 2.33 × 10⁻³mm/mm
Modulus of Elasticity Е = δ/ε
= 159.155 × 10⁶/2.33 × 10⁻³ = 68.306 GPA
Also final diameter d(f) = 19.9837 mm
Initial diameter d(i) = 20 mm
Poisson said that V = Е(elasticity)/Е(long)
= - <u>( 19.9837 - 20 /20)</u>
2.33 × 10⁻³
= 0.354,
∴ v = 0.354
Also G = Е/2. (1+V)
= 68.306 × 10⁹/ 2.(1+ 0.354)
= 25.34 GPA
⇒ G = 25.34 GPA
Answer:
note:
<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>
Answer:
One
For surface-mounted and pendant-hung luminaires, support rods should be placed so that they extend about _one___
<h3>what is supported mounted?</h3>
- A structure that holds up or serves as a foundation for something else. Support is a synonym for mounting.
To learn more about it, refer
to brainly.com/question/25689052
#SPJ4
Answer:
835,175.68W
Explanation:
Calculation to determine the required power input to the pump
First step is to calculate the power needed
Using this formula
P=V*p*g*h
Where,
P represent power
V represent Volume flow rate =0.3 m³/s
p represent brine density=1050 kg/m³
g represent gravity=9.81m/s²
h represent height=200m
Let plug in the formula
P=0.3 m³/s *1050 kg/m³*9.81m/s² *200m
P=618,030 W
Now let calculate the required power input to the pump
Using this formula
Required power input=P/μ
Where,
P represent power=618,030 W
μ represent pump efficiency=74%
Let plug in the formula
Required power input=618,030W/0.74
Required power input=835,175.68W
Therefore the required power input to the pump will be 835,175.68W