Answer:
ummm not good so I got this from my teachers textbook
Explanation:
Most of the Universe consists of matter and energy. Energy is the capacity to do work. Matter has mass and occupies space. All matter is composed of basic elements that cannot be broken down to substances with different chemical or physical properties. Elements are substances consisting of one type of atom, for example Carbon atoms make up diamond, and also graphite. Pure (24K) gold is composed of only one type of atom, gold atoms. Atoms are the smallest particle into which an element can be divided. The ancient Greek philosophers developed the concept of the atom, although they considered it the fundamental particle that could not be broken down. Since the work of Enrico Fermi and his colleagues, we now know that the atom is divisible, often releasing tremendous energies as in nuclear explosions or (in a controlled fashion in) thermonuclear power plants.The atomic number is the number of protons an atom has. It is characteristic and unique for each element. The atomic mass (also referred to as the atomic weight) is the number of protons and neutrons in an atom. Atoms of an element that have differing numbers of neutrons (but a constant atomic number) are termed isotopes. Isotopes, shown in Figure 1 and Figure 2, can be used to determine the diet of ancient peoples by determining proportions of isotopes in mummified or fossilized human tissues. Biochemical pathways can be deciphered by using isotopic tracers. The age of fossils and artifacts can be determined by using radioactive isotopes, either directly on the fossil (if it is young enough) or on the rocks that surround the fossil (for older fossils like dinosaurs). Isotopes are also the source of radiation used in medical diagnostic and treatment procedures.
We don't see any circuit diagrams.
This worries us for a few seconds, until we realize that we don't know anything about the experiment described in the problem either, so we don't have to worry about it at all.
Answer:
C) 7.35*10⁶ N/C radially outward
Explanation:
- If we apply the Gauss'law, to a spherical gaussian surface with radius r=7 cm, due to the symmetry, the electric field must be normal to the surface, and equal at all points along it.
- So, we can write the following equation:

- As the electric field must be zero inside the conducting spherical shell, this means that the charge enclosed by a spherical gaussian surface of a radius between 4 and 5 cm, must be zero too.
- So, the +8 μC charge of the solid conducting sphere of radius 2cm, must be compensated by an equal and opposite charge on the inner surface of the conducting shell of total charge -4 μC.
- So, on the outer surface of the shell there must be a charge that be the difference between them:

- Replacing in (1) A = 4*π*ε₀, and Qenc = +4 μC, we can find the value of E, as follows:

- As the charge that produces this electric field is positive, and the electric field has the same direction as the one taken by a positive test charge under the influence of this field, the direction of the field is radially outward, away from the positive charge.
Answer:
Double helix
Explanation:
The Double helix is a DNA molecule. The two strands around the Double Helix is called the twisted ladder.
Answer:
<em><u>To be neutral</u></em>
Explanation:
Neutrons are electrically neutral but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic repulsion inside the nucleus.