To solve this problem, we have to use the formula:
E = h f
where E is total energy, h is Plancks constant
6.626x10^-34 J s, f is frequency
f = E / h
f = 3.686 × 10−24 J / (6.626x10^-34 J s)
<span>f = 5.56 x 10^9 Hz</span>
Answer:
dJ = 1.7 m
Explanation:
The Equation of the Balancing the moments in the center of the seesaw is like this:
∑Mo = 0
Mo = F*d
Where:
∑Mo : Algebraic sum of moments in the center(o) of the balance
Mo : moment in the o point ( N*m)
F : Force ( N)
d : distancia of the force to the the o point ( N*m)
Data
mA = 60 kg : mass of the Anna
mJ = 70 kg : mass of theJon
dA = 2 m : Distance from Anna to the center of the seesaw
g: acceleration due to gravity
Calculation of the distance from Jon to the center of the seesaw (dJ)
∑Mo = 0 WA : Ana's weight , WJ : Jon's weight
W = m*g
(WA)(dA) - (WJ) (dJ) = 0
(mA*g)(dA) - (mJ*g)(dJ) = 0
We divide by g the equation:
(mA)(dA) - (mJ)(dJ)= 0
(mA)(dA) = (mJ)(dJ)


dJ = 1.7 m
The acceleration should be a gain of 2 km/h per second
Answer: 10.34
Explanation:
Given
graph for a particle is given
angle turned by the particle in radians is given by the area under
graph
The area is given by

Revolutions(N) made by the object is given by

The answer is A ..........