Answer:
1. It is a good practice to fully define a sketch to avoid having erroneous dimensions on the faces of a solid, this avoids that when it is required to make an assembly with the drawn part appear assembly errors.
2. The 2D sketch should always be done on a plane, so solidworks would ask you to select a plane on which you want to make the sketch, on the other hand, if it is a 3D sketch, solidworks allows you to do it without the need for Select any plane.
Answer:
I=9.6×e^{-8} A
Explanation:
The magnetic field inside the solenoid.
B=I*500*muy0/0.3=2.1×e ^-3×I.
so the total flux go through the square loop.
B×π×r^2=I×2.1×e^-3π×0.025^2
=4.11×e^-6×I
we have that
(flux)'= -U
so differentiating flux we get
so the inducted emf in the loop.
U=4.11×e^{-6}×dI/dt=4.11×e^-6×0.7=2.9×e^-6 (V)
so, I=2.9×e^{-6}÷30
I=9.6×e^{-8} A
Answer:a
a) Vo/Vi = - 3.4
b) Vo/Vi = - 14.8
c) Vo/Vi = - 1000
Explanation:
a)
R1 = 17kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
(Va - Vi)/5kΩ + (Va -Vo)/17kΩ = 0
sin we know Va≈Vb=0
so
-Vi/5kΩ + -Vo/17kΩ = 0
Vo/Vi = - 17k/5k
Vo/Vi = -3.4
║Vo/Vi ║ = 3.4 ( negative sign phase inversion)
b)
R2 = 74kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
so
(Va-Vi)/5kΩ + (Va-Vo)74kΩ = 0
-Vi/5kΩ + -Vo/74kΩ = 0
Vo/Vi = - 74kΩ/5kΩ
Vo/Vi = - 14.8
║Vo/Vi ║ = 14.8 ( negative sign phase inversion)
c)
Also for ideal op-amp
Va≈Vb=0 so Va=0
Now for position 3 we apply nodal analysis we got at position 1
(Va - Vi)/5kΩ + (Va - Vo)/5000kΩ = 0 ( 5MΩ = 5000kΩ )
so
-Vi/5kΩ + -Vo/5000kΩ = 0
Vo/Vi = - 5000kΩ/5kΩ
Vo/Vi = - 1000
║Vo/Vi ║ = 1000 ( negative sign phase inversion)