M₁=50 g
m₀=60 g
w=100m₁/m₀
w=100*50/60=83.3%
1) Balanced chemical equation:
2SO2 (g) + O2 (g) -> 2SO3 (l)
2) Molar ratios
2 mol SO2 : 1 mol O2 : 2 mol SO3
3) Convert 6.00 g O2 to moles
number of moles = mass in grams / molar mass
number of moles = 6.00 g / 32 g/mol = 0.1875 mol O2.
4) Use proportions with the molar ratios
=> 2 moles SO2 / 1 mol O2 = x / 0.1875 mol O2
=> x = 0.1875 mol O2 * 2 mol SO2 / 1 mol O2 = 0.375 mol SO2.
5) Convert 0.375 mol SO2 to grams
mass in grams = number of moles * molar mass
molar mass SO2 = 32 g/mol + 2*16 g/mol = 64 g/mol
=> mass SO2 = 0.375 mol * 64 g / mol = 24.0 g
Answer: 24.0 g of SO2 are needed to react completely with 6.00 g O2.
Answer:
Explanation:
Ionic bonds result from transfer of electrons, whereas covalent bonds are formed by sharing. 2. Ionic bonds are electrostatic in nature, resulting from that attraction of positive and negative ions that result from the electron transfer process; charge separation between covalently bonded atoms is less extreme.
Acetylene is the only fuel gas suitable for gas welding because of its favourable flame characteristics of both high temperature and high propagation rates. Other fuel gases, such as propane, propylene or natural gas, produce insufficient heat input for welding but are used for cutting, torch brazing and soldering.
The chemical make-up changes.