The correct question is as follows: 0.500 moles of potassium oxide is dissolved in enough water to make 2.00 L of solution. Calculate the molarity of this solution (plz help!)
Answer: The molarity of this solution is 0.25 M.
Explanation:
Molarity is the number of moles of a substance divided by volume in liter.
As it is given that there are 0.5 moles of potassium oxide in 2.00 L of water so, the molarity of this solution is calculated as follows.

Thus, we can conclude that molarity of this solution is 0.25 M.
The question is incomplete. Complete question is attached below:
...........................................................................................................................
Answer:
Given: conc. of HBr = 1.4 M
Volume of HBr = 15.4 mL
Volume of KOH = 22.10 mL
We know that, M1V1 = M2V2
(HBr) (KOH)
Therefore, M2 = M1V1/V2
= 1.4 X 15.4/22.10
= 0.9756 M
Concentration of KOH is 0.9756 M.
Answer: option <span>C. the total energy inside the calorimeter will decrease.
</span>
Justification:
The answer is a direct application of the first law of thermodynamic (the law of conservation of energy).
By telling that the t<span>he calorimeter is sealed so that there is no heat exchanged between the contents of the container and the surrounding air, the first law of thermodynamics implies that the total energy inside the calorimeter will not change.
</span>
<span>That statement, without adding any more is enough justification.
</span>
Regarding, the other statements, you can show they are true:
<span>A.
the thermometer will show an increase in temperature.
</span><span>
</span><span>
</span><span>Since the reaction is exothermic, the heat released will increase the temperature inside the sealed calorimeter,which, of course, is shown by the termometer.
</span><span>
</span><span>
</span><span>
</span><span>B. The potential
energy of the products will be lower than that of the reactants.
</span><span>
</span><span>
</span><span>In any exothermic reaction, the potential energy of the products is lower than that of the reactants, because the heat released is lost by the reactants when they react and transform into the products.
</span><span>
</span><span>
</span><span>D. The water
increases in temperature as the reaction gives off heat</span>.
Sure. The heat cannot leave the sealed calorimeter, but the water inside the calorimeter will absorb that heat: the molecules of water will gain kinetic energy and so its temperature will be increase.
During cellular respiration<span>, glucose is broken down in the presence of oxygen to produce carbon dioxide and water,energy is </span><span>released.</span>
a laboratory for research in chemistry. chem lab, chemistry lab. lab, laboratory, research lab, research laboratory, science lab, science laboratory - a workplace for the conduct of scientific research.