In both scenarios, the position - time graph will be a linear graph, since the speed is constant, so your position is moving at a consistent pace.
There are so many to choose from, I'll give you two. One is a big one. The other so/so. People used to believe the earth was flat and you would fall off, until Christopher Columbus sailed across. And another interesting one is the vulcan planet theory, which is that there was an extra planet between Mercury and T sun. however it turned out to be false. So there, need anymore just tell me.
Answer:
275 kPa
Explanation:
mass of the gas=m=1.5 kg
initial volume if the gas=V₁=0.04 m³
initial pressure of the gas= P₁=550 kPa
as the condition is given final volume is double the initial volume
V₂=final volume
V₂=2 V₁
As the temperature is constant
T₁=T₂=T
=
putting the values in the equation.
=
P₂=
P₂=
P₂=275 kPa
So the final pressure of the gas is 275 kPa.
-- If the force is applied in the <em>same direction</em> as the object is moving, then the object's momentum in that direction will <em>increase</em>.
-- If the force is applied in the direction <em>OPPOSITE </em>to the way the object is moving, then the object's momentum will <em>decrease</em>.
-- In either case, the CHANGE in the object's momentum will be
(strength of the force) x (length of time the force is applied) .
This quantity is also called "impulse".
Answer:

Explanation:
Here we know that for the given system of charge we have no loss of energy as there is no friction force on it
So we will have


now we know when particle will reach the closest distance then due to electrostatic repulsion the speed will become zero.
So we have



so distance moved by the particle is given as


