Answer:
90%
Explanation:
if you lose 10% of a 100 you get 90
To solve this problem it is necessary to apply the equations related to the conservation of momentum.
This definition can be expressed as

Where
= Mass of each object
= Initial Velocity of each object
= Final velocity
Rearranging the equation to find the final velocity we have,

Our values are given as

Replacing we have,


Therefore the final velocity is 6.5m/s
The answer is Infrared. The infrared of the electromagnetic spectrum is most of earth's outgoing terrestrial radiation. <span>Earth is the hot body with temperature of 30 degrees on the average.</span>
U=10 m/s
v=30 m/s
t=6 sec
therefore, a=(v-u)/t
=(30-10)/6
=(10/3) ms^-2
now, displacement=ut+0.5*a*t^2
=60+ 0.5*(10/3)*36
=120 m
And you can solve it in another way:
v^2=u^2+2as
or, s=(v^2-u^2)/2a
=(900-100)/6.6666666.......
=120 m
The air pressure in the pressurized tank will be 24014.88 N/m²,196.2 N/m²,2084.625 N/m².
<h3 /><h3>What is pressure?</h3>
The force applied perpendicular to the surface of an item per unit area across which that force is spread is known as pressure.
It is denoted by P. The pressure relative to the ambient pressure is known as gauge pressure.
Pressure is found as the product of the density,acceleraton due to gravity and the height.
P₁=ρ₁gh₁
P₁=13,600 kg/m³×9.81 (m/s²)×0.18 m
P₁=24014.88 N/m²
P₂=ρ₂gh₂
P₂= 1000 kg/m³×9.81 (m/s²)×00.2 m
P₂=196.2 N/m²
P₃=ρ₃gh₃
P₃=850 kg/m³×9.81 (m/s²)×0.25
P₃=2084.625 N/m²
Hence,the air pressure in the pressurized tank will be 24014.88 N/m²,196.2 N/m²,2084.625 N/m².
To learn more about the pressure refer to the link;
brainly.com/question/356585
#SPJ4