1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
11

Identical particles are placed at the 50-cm and 80-cm marks on a meter stick of negligible mass. This rigid body is then mounted

so as to rotate freely about a pivot at the 0-cm mark on the meter stick. If this body is released from rest in a horizontal position, what is the angular speed of the meter stick as it swings through its lowest position
Physics
1 answer:
kogti [31]3 years ago
4 0

Answer:

5.35 rad/s

Explanation:

From the question, we are toldthat an Identical particles are placed at the 50-cm and 80-cm marks on a meter stick of negligible mass. This rigid body is then mounted so as to rotate freely about a pivot at the 0-cm mark on the meter stick.

Solving this question, the potential energy of the particles must equal to the Kinectic energy i.e

P.E=K.E

Mgh= m½Iω²-------------eqn(*)

Where M= mass of the particles

g= acceleration due to gravity= 9.81m/s^2

ω= angular speed =?

h= height of the particles in the stick on the metre stick= ( 50cm + 80cm)= (0.5m + 0.8m)= 130cm=1.3m

If we substitute the values into eqn(*) we have

m×9.81× (1.3m)= 1/2× m×[ (0.5m)² + [(0.8m)²]× ω²

m(12.74m²/s²)= 1/2× m× (0.25+0.64)× ω

m(12.74m²/s²)= 1/2× m× 0.89× ω²

We can cancel out "m"

12.74= 1/2×0.89 × ω²

12.74×2= 0.89ω²

25.48= 0.89ω²

ω²= 28.629

ω= √28.629

ω=5.35 rad/s

Hence, the angular speed of the meter stick as it swings through its lowest position is 5.35 rad/s

You might be interested in
30 points please answer asap!
tino4ka555 [31]

Answer:

False, if its not moving there is no potential energy.

5 0
3 years ago
Read 2 more answers
Elmer Fudd is walking at 2.0 m/s. If he walks for 2.0 minutes, how far does he walk?
SVEN [57.7K]

Answer:

240 meters

Explanation:

He is walking 2 meters per second, and there are 60 seconds per minute. There are 120 seconds in two minutes. So, 120 x 2 = 240. That's your answer!

7 0
3 years ago
Part 1 - Basic Equations
bearhunter [10]

Answer:

1. λ = 2 L, 2.  v = 2L f₁ , 3.    v = √ T /μ², 4.   μ = 2,287 10⁻³ kg / m , 5.   Δv / v = 0.058 , 6.    Δμ /  μ = 0.12 , 7. Δ μ = 0.3  10⁻³ kg / m ,

8.  μ = (2.3 ±0.3)  10⁻³ kg / m

Explanation:

The speed of a wave is

            v = λ f                1

Where f is the frequency and λ the wavelength

     

The speed is given by the physical quantities of the system with the expression

            v = √ T /μ²                   2

1) The fundamental frequency of a string is when at the ends we have nodes and a maximum in the center, therefore this is

                 L = λ / 2

                 λ = 2 L

2) For this we substitute in equation 1

              v = 2L f₁

3) let's clear from equation 2

             

The speed of a wave is

            v = λ f₁

Where f is the frequency and Lam the wavelength

The speed is given by the physical quantities of the system with the expression

           v = √ T /μ²                            2

4) linear density is

           μ = T / (2 L f₁)²

           μ = 5.08 / (2 0.812 29.02)²

           μ = 2,287 10⁻³ kg / m

We maintain three significant length figures, so the result is reduced to

           μ = 2.29 10⁻³ kg / m

5) the speed of the wave is

            v = 2 L f₁

The fractional uncertainty is

         Δv / v = ΔL / L + Δf₁ / F₁

         Δv / v = 0.02 / 0.812 + 1 / 29.02

         Δv / v = 0.024 + 0.034

         Δv / v = 0.058

6) the equation for linear density is

              μ = T / (2 L f₁)²

             Δμ / μ = 2 ΔL / L + 2Δf₁ / f₁

The tension is an exact value therefore its uncertainty is zero ΔT = 0

            Δμ / μ = 2 0.02 / 0.812 + 2 1 / 29.02

             Δμ /  μ = 0.12

7) absolute uncertainty

           Δ μ = e_{r}   μ

           Δ μ = 0.12 2.29 10⁻³ kg / m

           Δ μ = 0.3  10⁻³ kg / m

8)

           μ = (2.3 ±0.3)  10⁻³ kg / m

8 0
3 years ago
Can y’all please help me with this 3 part question?
klio [65]

Answer:

Vf = 210 [m/s]

Av = 105 [m/s]

y = 2205 [m]

Explanation:

To solve this problem we must use the following formula of kinematics.

v_{f} =v_{o} +g*t

where:

Vf = final velocity [m/s]

Vo = initial velocity = 0 (released from the rest)

g = gravity acceleration = 10 [m/s²]

t = time = 21 [s]

Vf = 0 + (10*21)

Vf = 210 [m/s]

Note: The positive sign for the gravity acceleration means that the object is falling in the same direction of the gravity acceleration (downwards)

The average speed is defined as the sum of the final speed plus the initial speed divided by two. (the initial velocity is zero)

Av = (210 + 0)/2

Av = 105 [m/s]

To calculate the distance we must use the following equation of kinematics

v_{f} ^{2} =v_{o} ^{2} +2*g*y\\\\(210)^{2} = 0 + (2*10*y)

44100 = 20*y

y = 2205 [m]

5 0
3 years ago
Define electromagnetic radiation ​
fiasKO [112]

Answer a kind of radiation including visible light, radio waves,gamma rays,and x-rays,in which electric and magnetic fields vary simultaneously

 

Explanation:

5 0
3 years ago
Other questions:
  • A plane electromagnetic wave with wavelength 3.0 m, travels in free space in the+xdirection with its electric field vector~E, of
    12·1 answer
  • In order to find the density of an object, Maria is trying to measure its volume. However, the object does not fit in the tool s
    12·2 answers
  • As a review for Newton's Laws, my teacher has assigned my class to do an egg drop test. Does anyone have any tips on what to use
    9·1 answer
  • 8) What kind of circulation carries blood to all organs and systems?
    14·2 answers
  • I’ll give Brainliest, Identify the force acting as the
    8·1 answer
  • Look at screenshot and please answer as quick as possible
    7·2 answers
  • Please help!!
    14·1 answer
  • Working Together
    7·1 answer
  • A charge of 1. 5 µC is placed on the plates of a parallel plate capacitor. The change in voltage across the plates is 36 V. How
    5·1 answer
  • 2.63 kg of molten copper already at its melting point has 750 kJ removed from it.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!