Answer:
submit the papers onto this platform and we will try to help out.
B. The answer is: All nucleotides have a phosphorus atom that can be replaced with 32P.
Nucleotides contain a nitrogenous base, a five-carbon sugar, and, at least, one phosphate group. Exactly that phosphate group in the nucleotide has the phosphorus atom. Therefore, the phosphorus atom in the nucleotide can be replaced with radioactive phosphorus-32 (32P).
Zeff = Z - S
Here, Z is the number of protons in the nucleus, that is, atomic number, and S is the number of nonvalence electrons.
For boron, the electronic configuration is 1s₂ 2s₂ 2p₄
Z = 5, S = 2
Zeff = 5-2 = +3
For O, electronic configuration is 1s₂ 2s₂ 2p₄
Z = 8, S = 2
Zeff = 8-2 = +6
Hence, the correct answer is second option, that is, +3 and +6, the Zeff of boron is smaller in comparison to O, thus, boron exhibits a bigger size than O.
Change in temperature affects the rate of reaction since it causes a change in the number of collisions per unit time. These collisions cause the breaking of bonds and formation of new ones giving out new products. An increase in temperature increases the rate of collisions hence increasing the rate of reaction while a decrease in temperature leads to a decrease in the rate of reaction due to the decreased number of collisions per unit time. thus the correct choice for blank A is: B. the number of collisions between molecules and for blank B: decrease.
Though the ratio of any two atom's masses was the same on either scale, it was horribly confusing, so in 1961, a compromise was reached. Instead of using either Hydrogen, or Oxygen as the standard, the isotope of Carbon<span> with 6 </span>protons<span> and 6 neutrons in its nucleus (</span>Carbon-12<span>) was given a mass of exactly 12.</span>