Answer: im not sure im only in 8th grade but im pretty sure Erosion i started learning about this last year i really cant explain it... im still hainving trouble with it.
Explanation:

<em>Chemists use the mole unit to represent 6.022 × 10 23 things, whether the things are atoms of elements or molecules of compounds. This number, called Avogadro's number, is important because this number of atoms or molecules has the same mass in grams as one atom or molecule has in atomic mass units. </em>
hope helpful~
Molality= mol/ Kg
if we assume that we have 1 kg of water, we have 3.19 moles of solute.
the formula for mole fraction --> mole fraction= mol of solule/ mol of solution
1) if we have 1 kg of water which is same as 1000 grams of water.
2) we need to convert grams to moles using the molar mass of water
molar mass of H₂O= (2 x 1.01) + 16.0 = 18.02 g/mol
1000 g (1 mol/ 18.02 grams)= 55.5 mol
3) mole of solution= 55.5 moles + 3.19 moles= 58.7 moles of solution
4) mole fraction= 3.19 / 58.7= 0.0543
First, we have to get:
1- The heat required to increase T of ice from -50 to 0 °C:
according to q formula:
q1 = m*C*ΔT
when m is the mass of ice = mol * molar mass
= 1 mol * 18 mol/g
= 18 g
and C is the specific heat capacity of ice = 2.09 J/g-K
and ΔT change in temperature = 0- (-50) = 50°C
by substitution:
∴q1 = 18 g * 2.09 J/g-K *50°C
= 1881 J = 1.881 KJ
2- the heat required to melt this mass of ice is :
q2 = n*ΔHfus
when n is the number of moles of ice = 1 mol
and ΔHfus = 6.01 KJ/mol
by substitution:
q2 = 1 mol * 6.01 KJ/mol
= 6.01 KJ
3- the heat required to increase the water temperature from 0°C to 60 °C is:
q3 = m*C*ΔT
when m is the mass of water = 18 g
C is the specific heat capacity of water = 4.18 J/g-K
ΔT is the change of Temperature of water = 60°C - 0°C = 60°C
by substitution:
∴q3 = 18 g * 4.18 J/g-K * 60°C
= 4514 J = 4.514 KJ
∴the total change of enthalpy = q1+q2+q3
= 1.881 KJ +6.01 KJ + 4.514 KJ
= 12.405 KJ