Answer:
For a fixed mass of gas at constant pressure, the volume is directly proportional to the kelvin temperature. That means, for example, that if you double the kelvin temperature from, say to 300 K to 600 K, at constant pressure, the volume of a fixed mass of the gas will double as well.
Explanation:
In chemistry and quantum mechanics, an orbital is a mathematical function that describes the wave-like behavior of an electron, electron pair, or (less commonly) nucleons. An orbital may also be called an atomic orbital or electron orbital. Although most people think of an "orbit" regarding a circle, the probability density regions that may contain an electron may be spherical, dumbbell-shaped, or more complicated three-dimensional forms.
Based on the dilution formula, 0.1 mL of the stock solution of the enzyme is required to prepare a 50-fold diluted enzyme in 0.01 M HCl.
<h3>How can 50-fold dilution of the enzyme be done?</h3>
The 50-fold dilution of the stock enzyme solution can be done by using the dilution formula to determine the given volume of the stock solution required.
The dilution formula is given below:
where:
- C1 = Initial concentration of enzyme
- C2 = Final concentration of enzyme
- V1 = Initial volume
- V2 = Final volume
From the given data for the enzyme dilution;
C1 = 1
C2 = 1/50 = 0.02
V1 = x
V2 = 5 ml
Making V1 subject of formula in the dilution formula:
V1 = C2V2/C1
V1 = 0.02 * 5/1 = 0.1 mL
Therefore, 0.1 mL of the stock solution of the enzyme is required to prepare a 50-fold diluted enzyme in 0.01 M HCl.
Learn more about dilution at: brainly.com/question/24709069
#SPJ1
<h3>
Answer:</h3>
4.56 × 10^-19 Joules
<h3>
Explanation:</h3>
We are given;
- Wavelength of the wave as 435.8 nm
We are required to calculate the amount of energy released by an electron.
- We know that the speed of the wave, c is 2.998 × 10^8 m/s
- But, c = f × λ , where f is the frequency and λ is the wavelength
- Energy of a wave is given by the formula;
E = hf , where h is the plank's constant, 6.626 × 10^-34 J-s
But, f = c/λ
Therefore;
f = (2.998 × 10^8 m/s) ÷ (4.358 × 10^-7 m)
= 6.879 × 10^14 Hz
Thus;
Energy = 6.626 × 10^-34 J-s ×6.879 × 10^14 Hz
= 4.558 × 10^-19 Joules
= 4.56 × 10^-19 Joules
Therefore, the energy that must be released by the electron is 4.56 × 10^-19 Joules
The sugar reacts with the gas, turning it to a semi-solid and sticky substance; clogging the gas lines along with many other things.