Answer:
5.00 mol Mg
10.0 mol Cl
40.0 mol O
Explanation:
Step 1: Given data
Moles of Mg(ClO₄)₂: 5.00 mol
Step 2: Calculate the number of moles of Mg
The molar ratio of Mg(ClO₄)₂ to Mg is 1:1.
5.00 mol Mg(ClO₄)₂ × 1 mol Mg/1 mol Mg(ClO₄)₂ = 5.00 mol Mg
Step 3: Calculate the number of moles of Cl
The molar ratio of Mg(ClO₄)₂ to Cl is 1:2.
5.00 mol Mg(ClO₄)₂ × 2 mol Cl/1 mol Mg(ClO₄)₂ = 10.0 mol Cl
Step 4: Calculate the number of moles of O
The molar ratio of Mg(ClO₄)₂ to Cl is 1:8.
5.00 mol Mg(ClO₄)₂ × 8 mol O/1 mol Mg(ClO₄)₂ = 40.0 mol O
1) you want to increase friction when it gets cold. If you're outside and it's really cold, you're going to rub your hands to warm them up, therefore friction is increasing
I'm not do sure about decreasing.
The volume of a gas that is required yo react with 4.03 g mg at STP is 1856 ml
calculation/
- calculate the moles of Mg used
moles=mass/molar mass
moles of Mg is therefore=4.03 g/ 24.3 g/mol=0.1658 moles
- by use of mole ratio of Mg:O2 from the equation which is 2:1
the moles 02=0.1679 x1/20.0829 moles
- at STP 1 mole of a gas= 22.4 l
0.0895 moles=? L
- =0.0895 moles x22.4 l/ 1 mole=1.8570 L
into Ml = 1.8570 x1000=1856 ml approximately to 1860
Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction for this problem about stoichiometry:

Whereas there is a 3:2 mole ratio of oxygen (molar mass = 32.0 g/mol) to iron (III) oxide (molar mass = 159.69 g/mol) and therefore, the correct stoichiometric setup is:

Regards!