Answer:
The minimum frequency required to ionize the photon is 111.31 ×
Hertz
Given:
Energy = 378 
To find:
Minimum frequency of light required to ionize magnesium = ?
Formula used:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
Solution:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
738 ×
= 6.63 ×
× v
v = 111.31 ×
Hertz
The minimum frequency required to ionize the photon is 111.31 ×
Hertz
Answer:
A) v = 40 m / s, B) v_average = 20 m / s
Explanation:
For this exercise we will use the kinematics relations
A) the final velocity for t = 5 s and since the body starts from rest its initial velocity is zero
v = vo + a t
v = 0 + 8 5
v = 40 m / s
B) the average velocity can be found with the relation
v_average = vf + vo / 2
v-average = 0+ 40/2
v_average = 20 m / s
Answer:
The Awnser is C
Explanation:
Placing test tubes in an ice bath for 15 minutes
Answer: Share
Explanation: <em>A mixture in which its constituents are distributed uniformly is called homogeneous mixture, such as salt in water. A mixture in which its constituents are not distributed uniformly is called heterogeneous mixture, such as sand in water.</em>
Answer:
There are several kinds of plants who grow and thrive near volcanic locations. For example coffee, grape vines, moss and the rare Hawaiian argyroxiphium, or "silversword." These plants grow and survive using the nutrients from the ashes of the volcanic eruptions along with cooled lava.
Mosses and Lichens form a protective layer over the land which helps it to retain water inside it, rather than drying out which is the case in volcanic sites. Therefore, the retained water helps the land to form and become appropriate for other plants to grow as well.