No force is required to lift that balloon. In fact, force is required to hold it down, and if you let go, it's up, up, and away.
Since the balloon's density is less than the density of the air around it, it's lighter than the air it displaces, there is a net upward buoyant force acting on it, and it floats up !
Answer:
The answer depends on what object you are dropping. Are you dropping a balloon or a car? (I'm joking 'bout that one.) If the mass of the object is very little, then it might drop slower. If the mass is bigger, then it might drop faster.
Good luck!
Explanation:
Answer:
Fa = 5000 [N]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
Let's assume that the movement of the plane is to the right, any movement or force to the right will be marked with a positive sign, while any force or movement to the left, will be taken as negative.
The force of the turbine drives the plane to the right, therefore it is positive, the acceleration is constant and keeps the movement to the right, therefore it is positive, the wind drag force tries to prevent the movement of the plane to the left therefore it is negative, with this analysis we deduce the following equation.
ΣF = m*a
where:
ΣF = sum of forces [N] (units of Newtons)
m = mass = 65000 [kg]
a = acceleration = 3 [m/s²]
Fa = force exerted by the air [N]
200000 - Fa = 65000*3
Fa = 200000 - (3*65000)
Fa = 5000 [N]
Answer:
There is no displacement.
Explanation:
Because the runner is running laps and returning to the original place, there is no displacement as displacement is relative to the change in location from the original position.
Hope this helps. . .
ly UwU