The property of matter that is responsible for electrical phenomena, existing in a positive or negative form.
A moment causes a rotation about or axis. If the moment is to be taken about a point due to a force F, then in order for a moment to develop, the line of action cannot pass through that point...... the total moment was zero because the moment arm was zero as well
By looking at the acceleration of the object.
In fact, Netwon's second law states that the resultant of the forces acting on an object is equal to the product between the mass m of the object and its acceleration:

So, when static friction is acting on the object, if the object is still not moving we know that all the forces are balanced: in fact, since the object is stationary, its acceleration is zero, and so the resultant of the forces (left term in the formula) must be zero as well (i.e. the forces are balanced).
The coefficient of static friction is 0.234.
Answer:
Explanation:
Frictional force is equal to the product of coefficient of friction and normal force acting on any object.
So here the mass of the object is given as 2 kg, so the normal force will be acting under the influence of acceleration due to gravity.
Normal force = mass * acceleration due to gravity
Normal force = 2 * 9.8 = 19.6 N.
And the frictional force is given as 4.6 N, then

Coefficient of static friction = 4.6 N / 19.6 N = 0.234
So the coefficient of static friction is 0.234.
Answer:
v₁ = -0.8087 m / s
Explanation:
To solve this problem we can use the conservation of momentum, for this we define a system formed by the man, the skateboard and the brick, therefore the force during the separation is internal and the momentum is conserved
Initial instant. When they are united
p₀ = 0
Final moment. After throwing the brick
= (m_man + m_skate) v1 + m_brick v2
the moment is preserved
p₀ = p_{f}
0 = (m_man + m_skate) v₁ + m_brick v₂
v₁ = -
the negative sign indicates that the two speeds are in the opposite direction
let's calculate
v₁ = -
v₁ = -0.8087 m / s