To solve this problem we need to apply the corresponding sound intensity measured from the logarithmic scale. Since in the range of intensities that the human ear can detect without pain there are large differences in the number of figures used on a linear scale, it is usual to use a logarithmic scale. The unit most used in the logarithmic scale is the decibel yes described as

Where,
I = Acoustic intensity in linear scale
= Hearing threshold
The value in decibels is 17dB, then

Using properties of logarithms we have,




Therefore the factor that the intensity of the sound was 
Answer:
Quantity of charge = 80 Coulombs
Explanation:
Given the following data;
Current = 2 A
Time = 40 seconds
To find the amount of charge flowing through the light bulb;
Mathematically, the quantity of charge passing through a conductor is given by the formula;
Quantity of charge = current * time
Substituting into the formula, we have;
Quantity of charge = 2 * 40
Quantity of charge = 80 Coulombs
Answer:
Sound energy to electric energy - a person talking into a microphone
Radiant energy to electric energy - sunlight falling on solar panels
Gravitational potential energy to motion energy - a ball dropped from a height
Explanation:
A person talking is the sound energy and going into an electric phone
Sunlight or Radiant energy falls onto the solar panels creating electric energy
The ball is being pulled down by gravity from a certain height, going down to the ground, it’s motion, falling
Base in your questions that ask what cause the bright lines seen in the emission spectrum and i think the best answer to that is the H2 gas is used when protons was heated so the electron absorb all the photons and get exited and resulted by given of a light.
I would say A not 100℅ thou