N₂H₄ + 2H₂O₂ → N₂ + 4H₂O
mol = mass ÷ molar mass
If mass of hydrazine (N₂H₄) = 5.29 g
then mol of hydrazine = 5.29 g ÷ ((14 ×2) + (1 × 4))
= 0.165 mol
mole ratio of hydrazine to Nitogen is 1 : 1
∴ if moles of hydrazine = 0.165 mol
then moles of nitrogen = 0.165 mol
Mass = mol × molar mass
Since mol of nitrogen (N₂) = 0.165
then mass of hydrazine = 0.165 × (14 × 2)
= 4.62 g
Q = mcΔT = (4.00 g)(0.129 J/g•°C)(40.85 °C - 0.85 °C)
Q = 20.6 J of energy was involved (more specifically, 20.6 J of heat energy was absorbed from the surroundings by the sample of solid gold).
An atom is the smallest particle that can have the properties of a compound.
Answer:
1: marine
2:rainforest
Temperate deciduous forest
taiga
tundra
desert
Explanation:
<u>Answer:</u> The value of
for the final reaction is 
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> 
<u>Equation 2:</u> 
The net equation follows:

As, the net reaction is the result of the addition of reverse of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of inverse of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of
for the final reaction is 