Answer:
electric filed is 907 N/C
Explanation:
Given data
surface of area = 0.321 m²
electric flux of 123 N.m²/C
angle = 25°
to find out
magnitude of the electric field
solution
we know flux formula that is
flux = electric filed × area
put all value
123 = electric filed × 0.321 sin(25)
electric filed = 123 / 0.321 sin(25)
electric filed = 906.67
so electric filed is 907 N/C
Equal to 50
law of reflection: angle of incidence equals angle of reflection
Answer:
First law: kinetic energy is used to turn an electric generator
Second law: some thermal energy is lost to the environment as it travels through the system
Explanation:
The first law of thermodynamics is known as the law of conservation of energy. It states that energy can neither be created nor destroyed but can only be transferred or changed from one form to another. When thermal energy is used to generate electricity, the kinetic energy of the steam is used to turn the electric generator (thereby producing electrical energy).
The second law of thermodynamics states that energy transfer or transformation leads to an increase in entropy resulting in the loss of energy. This law also states that as energy is transferred or transformed, some is lost in a form that is unusable. When thermal energy is used to generate electricity, some of the thermal energy is lost to the environment as it travels through the system.
To calculate for the pressure of the system, we need an equation that would relate the
number of moles (n), pressure (P), and temperature (T) with volume (V). There are a number of equations that would relate these values however most are very complex equations. For
simplification, we assume the gas is an ideal gas. So, we use PV = nRT.<span>
PV = nRT where R is the universal gas
constant
P = nRT / V</span>
<span>P = 3.40 mol ( 0.08205 L-atm / mol-K ) (251 + 273.15 K) / 1.75 L </span>
<span>P = 83.56 atm</span>
<span>
</span>
<span>Therefore, the pressure of the gas at the given conditions of volume and temperature would be 83.56.</span>
Answer:
Final distance from the origin: 10.82 km. the vector points as shown in the attached image.
Angle with respect to the east: 
Explanation:
Please refer to the attached image. The cyclist's trip is indicated with the green arrows (9 km to the north followed by 6 km to the east.
So his final position is at the tip of this last vector, and indicated by the orange vector drawn form the point where the trip starts to the cyclist's final location.
We observe that this orange vector is in fact the hypotenuse of a right angle triangle, and we can estimate the distance from the origin by the Pythagorean theorem:

Notice that this is NOT the actual number of km that the cyclist pedaled to reach the final point.
Now, to find the value of the angle
, we need to use trigonometry, and in particular the tangent function gives us the ratio between the side of the triangle "opposite" to the angle, divided the side "adjacent" to the angle:

Now we can find the value of the angle by using the arctan function:
