Answer:
0.27 atm
Explanation:
<em>At 25ºC, Kp = 2.9 x 10⁻³ for the reaction NH₄OCONH₂(s) ⇌ 2 NH₃(g) + CO₂(g). In an experiment carried out at 25ºC, a certain amount of NH₄OCONH₂ is placed in an evacuated rigid container and allowed to come to equilibrium. Calculate the total pressure in the container at equilibrium.</em>
Step 1: Make an ICE chart
Solid and liquids are ignored in ICE charts.
NH₄OCONH₂(s) ⇌ 2 NH₃(g) + CO₂(g)
I 0 0
C +2x +x
E 2x x
Step 2: Write the pressure equilibrium constant expression (Kp)
Kp = [NH₃]² × [CO₂]
Kp = (2x)² × x
2.9 × 10⁻³ = 4 x³
x = 0.090 atm
Step 3: Calculate the pressures at equilbrium
pNH₃ = 2x = 2(0.090 atm) = 0.18 atm
pCO₂ = x = 0.090 atm
The total pressure is:
P = 0.18 atm + 0.090 atm = 0.27 atm
The quantity that you would measure in kg, is mass.
Answer:
The reaction shifts to the left.
Explanation:
Equilibrium constant (K) = 46.3
Reaction Quotient (Q) = 525
The relationship between Q and K with their implications are given as;
K = Q (No net reaction)
K > Q (Reaction shifts to the right)
K < Q (Reaction shifts to the left)
Since in this question, Q (525) > K (46.3)
The reaction shifts to the left.
Answer:
It's called the shielding effect
Explanation:
It describes the decrease in attraction between an electron and the nucleus in any atom with more than one electron shell. (I hope this helps)
Answer:
of water at 30C and 1 atm is 256.834 J/mol·K.
Explanation:
To solve the question, we note the Maxwell relation such as

Where:
= Specific heat of gas at constant pressure = 75.3 J/mol·K
= Specific heat of gas at constant volume = Required
T = Temperature = 30 °C = 303.15 K
α = Linear expansion coefficient = 3.04 × 10⁻⁴ K⁻¹
K = Volume comprehensibility = 4.52 × 10⁻⁵ atm⁻¹
Therefore,
75.3 -
= 
=
- 75.3 = 256.834 J/mol·K.