1) Zn + 2 HCl = ZnCl2 + H2 ( <span>single replacement )
2) </span>2 NaCl + F2 = 2 NaF + Cl2 ( <span>single replacement )
3) </span>2 AlBr3 + 3 K2SO4 = 6 KBr + Al2(SO4)3 ( <span>double replacement )
4) </span>2 K + MgBr2 = 2 KBr + Mg ( <span>single replacement )
Answer 3
hope this helps!</span>
The volume of a box with length 25 cm, height 25 cm and width 1.0 m is 0.0625m³.
Volume of the box which is a cuboid can be calculated by multiplying the length, breadth and height of the given box.
Volume of the box is given by the product of the length of the box, Height of the box and Breadth or width of the box.
Since, the box is a cuboid, hence the formula is given by the products of length, breadth and height.
Given,
length of the box= 25cm = 0.25m
Height of the box =25cm = 0.25m
width of the box= 1m
Volume = length × width × height of box
Volume = 0.25 × 0.25 × 1
Volume = 0.0625m³
The volume of the box is 0.0625m³.
Learn more about Volume here, brainly.com/question/23118276
#SPJ9
Ionic bonds are formed when one of the two atoms that are reacting has excess electrons and transfer the electrons to the atom that is deficient in electrons. During the formation of the ionic bond, one of the reacting atoms will donate electrons and form positive ion.
A: C₆H₁₂O₆ + 6H₂O + 6O₂
6CO₂ + 12H₂O = C₆H₁₂O₆ + 6H₂O + 6O₂
Answer:
Explanation:
A) Formal charges represent an actual separation of charges.(FALSE)
(B) ΔHo rxn can be estimated from the bond enthalpies of reactants and products.(TRUE)
C)All second-period elements obey the octet rule in their compounds(FALSE).
(D)The resonance structures of a molecule can be separated from one another in the laboratory.(FALSE)
Bond enthalpy which is also reffered to as bond energy is the amount of energy that is required to break one mole of a bond.
taking the single bond between Oxygen and Hydrogen into considerationthe bond energy between their single bond is 463 kJ/mol.
formal charge is used for the comparison of the number of electrons present around an atom in a particular molecule with the number of electrons present around a neutral