Answer:
ΔS = -0.1076 kJ /kg*K
Explanation:
Step 1: Data given
Initial state = 0.8 m³/kg and 25 °C = 298.15 K
Final state = 0. 3³/kg and 287 °C = 560.15 K
Cv = 0.686 kJ/kg*K
Step 2: Calculate the average temperature
The average temperature = (25°C + 287 °C)/2 =156 °C ( = 429 K)
Step 3: Calculate the ΔS
ΔS =(Cv, average) * ln(T2/T1) + R*ln(V2/V1)
ΔS = 0.686 * ln(560.15/298.15) + 0.2598*ln( 0.1/0.8)
ΔS = -0.1076 kJ /kg*K
The answer is C : 15.7 m/s
Use the idea of : momentum before collision = momentum after collision
Before collision;
For car:mass=1.1×10^3, velocity=22
For truck:mass=2.3×10^3, velocity=0
After collision;
For car:mass=2.3×10^3, velocity=-11
For truck:mass=2.3×10^3, velocity=V
(1.1×10^3 × 22) + (2.3×10^3 × 0) = (1.1×10^3 × -11) + (2.3×10^3 × V)
24200 = -12100 + 2.3×10^3V
2.3×10^3V = 36300
V = 15.7 m/s
Answer:
A.
Explanation:
The continents on Earth have a fixed position.
Sorry if I'm wrong but I hope this helped
PH stands for potential hydrogen.
pH can be accurately tested using acid-based indicators since it is a part of the pH of something itself. (acid and bases) The indicators themselves work when the acidic properties of the indicator begins to dissolve and form ions which gives the color indicating the pH.
Density is an intrinsic property, so it is independent of the amount of substance present: one gold coin would have the same density as a solid gold boulder.
So if the density of gold is 19.3 g/cm³, the density of a bar of gold and the pieces into which the bar is cut would all be 19.3 g/cm³.