The answer is A because water can only evaporate if a liquid substances becomes gas , in this case it’s the water. When water is heated it evaporates. The molecule moves and vibrates so quickly that they can move to the atmosphere
Answer:
Hi there!
The correct answer is: C. East
Answer:
1. 3.56 M.
2. 0.99 M.
Explanation:
¡Hola!
1. En este caso, dado que la molaridad de una solution es calculada por medio de la siguiente ecuación:

Es posible calcular la molaridad de 50 gramos de hidróxido de potasio primero calculando las moles en dicha masa por medio de la masa molar:

Luego, dado el volumen de la solución, podemos calcular la molaridad:

2. En este segundo ejercicio, procedemos de la misma manera, pues primero calculamos las moles de nitrato de potasio:

Luego, calculamos la molaridad justo como se hizo anteriormente:

Best regards!
2.0 L
The key to any dilution calculation is the dilution factor
The dilution factor essentially tells you how concentrated the stock solution was compared with the diluted solution.
In your case, the dilution must take you from a concentrated hydrochloric acid solution of 18.5 M to a diluted solution of 1.5 M, so the dilution factor must be equal to
DF=18.5M1.5M=12.333
So, in order to decrease the concentration of the stock solution by a factor of 12.333, you must increase its volume by a factor of 12.333by adding water.
The volume of the stock solution needed for this dilution will be
DF=VdilutedVstock⇒Vstock=VdilutedDF
Plug in your values to find
Vstock=25.0 L12.333=2.0 L−−−−−
The answer is rounded to two sig figs, the number of significant figures you have for the concentration od the diluted solution.
So, to make 25.0 L of 1.5 M hydrochloric acid solution, take 2.0 L of 18.5 M hydrochloric acid solution and dilute it to a final volume of 25.0 L.
IMPORTANT NOTE! Do not forget that you must always add concentrated acid to water and not the other way around!
In this case, you're working with very concentrated hydrochloric acid, so it would be best to keep the stock solution and the water needed for the dilution in an ice bath before the dilution.
Also, it would be best to perform the dilution in several steps using smaller doses of stock solution. Don't forget to stir as you're adding the acid!
So, to dilute your solution, take several steps to add the concentrated acid solution to enough water to ensure that the final is as close to 25.0 L as possible. If you're still a couple of milliliters short of the target volume, finish the dilution by adding water.
Always remember
Water to concentrated acid →.NO!
Concentrated acid to water →.YES!
Answer: hope this helps
To make molar NaCl solutions of other concentrations dilute the mass of salt to 1000ml of solution as follows:
0.1M NaCl solution requires 0.1 x 58.44 g of NaCl = 5.844g.
0.5M NaCl solution requires 0.5 x 58.44 g of NaCl = 29.22g.
2M NaCl solution requires 2.0 x 58.44 g of NaCl = 116.88g.
Explanation: