Answer:
Explanation:
From the given information:
The concentration of metal ions are:
![[Ca^{2+}]= \dfrac{0.003474 \ M \times 20.49 \ mL}{10.0 \ mL}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%3D%20%5Cdfrac%7B0.003474%20%5C%20M%20%5Ctimes%2020.49%20%5C%20mL%7D%7B10.0%20%5C%20mL%7D)
![[Ca^{2+}]=0.007118 \ M](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%3D0.007118%20%5C%20M)
![[Mg^2+] = \dfrac{0.003474 \ M\times (26.23 - 20.49 )mL}{10.0 \ mL}](https://tex.z-dn.net/?f=%5BMg%5E2%2B%5D%20%3D%20%5Cdfrac%7B0.003474%20%5C%20M%5Ctimes%20%2826.23%20%20-%2020.49%20%29mL%7D%7B10.0%20%5C%20mL%7D)

Mass of Ca²⁺ in 2.00 L urine sample is:

= 0.1598 g
Mass of Ca²⁺ = 159.0 mg
Mass of Mg²⁺ in 2.00 L urine sample is:

= 0.3461 g
Mass of Mg²⁺ = 346.1 mg
Compared to the charge and mass of a proton an electron has......
A proton has approximately the same mass as..........
Answer:
[C₆H₅COO⁻][H₃O⁺]/[C₆H₅COOH] = Ka
Explanation:
The reaction of dissociation of the benzoic acid in water is given by the following equation:
C₆H₅-COOH + H₂O ⇄ C₆H₅-COO⁻ + H₃O⁺ (1)
The dissociation constant of an acid is the measure of the strength of an acid:
HA ⇄ A⁻ + H⁺ (2)
(3)
<em>Where the dissociation constant of the acid (Ka) is equal to the ratio of the concentration of the dissociated forms of the acid, [A⁻][H⁺], and the concentration of the acid, [HA]. </em>
So, starting from the equations (2) and (3), the constant equation for the dissociation reaction of benzoic acid in water, of the equation (1), is:
![K_{a} = \frac{[C_{6}H_{5}COO^{-}][H_{3}O^{+}]}{[C_{6}H_{5}COOH]}](https://tex.z-dn.net/?f=%20K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BC_%7B6%7DH_%7B5%7DCOO%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BC_%7B6%7DH_%7B5%7DCOOH%5D%7D%20)
I hope it helps you!
The molar mass of methylammonium bromide is 111u.
<h3>What is molar mass?</h3>
The molar mass is defined as the mass per unit amount of substance of a given chemical entity.
Multiply the atomic weight (from the periodic table) of each element by the number of atoms of that element present in the compound.
Add it all together and put units of grams/mole after the number.
Atomic weight of H is 1u
Atomic weight of N is 14u
Atomic weight of C is 12u
Atomic weight of Br is 79u
Calculating molar mass of
=2(1 x3+ 14+12+ 1 x 3 +79) = 111u
Hence, the molar mass of methylammonium bromide is 111u.
Learn more about molar mass here:
brainly.com/question/12127540
#SPJ1
Nonmetals form negatively charged ions, or anions. They do this because they need to gain one to three electrons in order to achieve an octet of valence electrons, making them isoelectronic with the noble gas at the end of the period to which they belong.