The integrated rate law for a second-order reaction is given by:
![\frac{1}{[A]t} = \frac{1}{[A]0} + kt](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%20%20%5Cfrac%7B1%7D%7B%5BA%5D0%7D%20%2B%20kt%20)
where, [A]t= the concentration of A at time t,
[A]0= the concentration of A at time t=0
<span>k =</span> the rate constant for the reaction
<u>Given</u>: [A]0= 4 M, k = 0.0265 m–1min–1 and t = 180.0 min
Hence, ![\frac{1}{[A]t} = \frac{1}{4} + (0.0265 X 180)](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%280.0265%20X%20180%29%20)
<span> = 4.858</span>
<span><span><span>Therefore, [A]</span>t</span>= 0.2058 M.</span>
<span>
</span>
<span>Answer: C</span>oncentration of A, after 180 min, is 0.2058 M
Answer:
Lonic.an electron will be transferred from potassium to the chlorine atom
Answer: The charge on the plates are 88.4 picafarad
Explanation:The equation used in measuring charge in a plate is given as:
C=Q/V =E A/D
Where E= dielectric content
A= Area of plates
d= distance between plates
Using dielectric constant for Air=8.84×10-12F/m
A=100cm2=0.01m2
d=10mm=0.001m
C= 8.84×10-12×0.01/0.001
C= 88.4 picafarad
Ok so O3 has a greater electronegativity and is taken into account first, -2*3=-6, so As has to equal 6/2=3, so As has a +3 oxidation number here