Answer: 9.68 x 10^10 grams.
Explanation:
Given that:
Mass of CO2 = ?
Number of molecules of CO2 = 2.2x10^9 molecules
Molar mass of CO2 = ? (let unknown value be Z)
For the molar mass of CO2: Atomic mass of Carbon = 12; Oxygen = 16
= 12 + (16 x 2)
= 12 + 32 = 44g/mol
Apply the formula:
Number of molecules = (Mass of CO2 in grams/Molar mass)
2.2x10^9 molecules = Z/44g/mol
Z = 2.2x10^9 molecules x 44g/mol
Z = 9.68 x 10^10g
Thus, the mass of 2.2x10^9 molecules of CO2 is 9.68 x 10^10 grams.
Explanation:
(a) The molecular equations shows the equation in which all the species of the reactants and the products are in molecules and the net charge is zero.
The complete ionic equations shows the equation in which all the species of the reactants and the products are in dissociated form and are represented as ions.
The net ionic equations shows the equation in which all the species of the reactants and the products are in dissociated form and do not show the spectator ions which are same in the reactants and the products.
(b) If there is no spectator ions in the reaction, then the complete and the net ionic equations would be identical.
Answer:
MCO3 is BaCO3
The mass of CO2 produced is 0.28g of CO2
Explanation:
The first step in solving the question is to put down the balanced reaction equations as shown in the image attached. Secondly, we obtain the relative number of moles acid and base as mentioned in the question. The balanced neutralization reaction equation is used to obtain the number of moles of excess acid involved in the neutralization reaction.
This is then subtracted from the total number of moles acid to give the number of moles of acid that reacted with MCO3. From here, the molar mass of MCO3 and identity of M can be found. Hence the mass of CO2 produced is calculated as shown.
Answer:form when magma and lava cool :/
Explanation:hope this helps, and I’m this because ingenious rocks are made/ formed from magma and lava.