Answer:
This question cannot be answered
Explanation:
This is a practical experiment which can only be done in person. Kindly go through the instructions and do the experiment carefully.
Answer:
a)n= 3.125 x
electrons.
b)J= 1.515 x
A/m²
c)
=1.114 x
m/s
d) see explanation
Explanation:
Current 'I' = 5A =>5C/s
diameter 'd'= 2.05 x
m
radius 'r' = d/2 => 1.025 x
m
no. of electrons 'n'= 8.5 x
a) the amount of electrons pass through the light bulb each second can be determined by:
I= Q/t
Q= I x t => 5 x 1
Q= 5C
As we know that: Q= ne
where e is the charge of electron i.e 1.6 x
C
n= Q/e => 5/ 1.6 x 
n= 3.125 x
electrons.
b) the current density 'J' in the wire is given by
J= I/A => I/πr²
J= 5 / (3.14 x (1.025x
)²)
J= 1.515 x
A/m²
c) The typical speed'
' of an electron is given by:
=
=1.515 x
/ 8.5 x
x |-1.6 x
|
=1.114 x
m/s
d) According to these equations,
J= I/A
=
=
If you were to use wire of twice the diameter, the current density and drift speed will change
Increase in the diameter increase the cross sectional area and decreases the current density as it has inverse relation.
Also drift velocity will decrease as it is inversely proportional to the area
Explanation:
Given that,
Rate of cooling of air
Initial temperature= 80°C
Final temperature = 5°C
We need to calculate
Using newton's law of cooling


Where, 
Here,
= 25°C (surrounding temperature)
dt = 1 minute

Put the value into the formula



Hence, This is the required answer.