1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sindrei [870]
3 years ago
13

When measuring a Brake Drum, the Brake Micrometer is set to a Base Drum Diameter of 10 Inches plus four notches, and the dial re

ads 22. What is the diameter of this drum
diameter of this drum?
Engineering
1 answer:
kozerog [31]3 years ago
7 0

Answer:

10.5

Explanation:

You might be interested in
Tesla Is the best ELECTRIC car brand, Change my mind
pochemuha

Answer:You are correct, no need to change.

Explanation:

5 0
3 years ago
Read 2 more answers
It is desired to produce and aligned carbon fiber-epoxy matrix composite having a longitudinal tensile strength of 630 MPa. Calc
ratelena [41]

Answer:

The answer is below

Explanation:

Given that:

Diameter (D) = 0.03 mm = 0.00003 m, length (L) = 2.4 mm = 0.0024 m, longitudinal tensile strength (\sigma_{cd})=630\ MPa = 630*10^6\ Pa, Fracture strength

(\sigma_f)=5100\ MPa=5100*10^6\ Pa,fiber-matrix\ stres(\sigma_m)=17.5\ MPa=17.5*10^6\ Pa,matrix\ strength=\tau_c=17\ MPa=17 *10^6\ Pa

a) The critical length (L_c) is given by:

L_c=\sigma_f*(\frac{D}{2*\tau_c} )=5100*10^6*\frac{0.00003}{2*17*10^6}=0.0045\ m=4.5\ mm

The critical length (4.5 mm) is greater than the given length, hence th composite can be produced.

b) The volume fraction (Vf) is gotten from the formula:

\sigma_{cd}=\frac{L*\tau_c}{D}*V_f+\sigma_m(1-V_f)\\\\V_f=\frac{\sigma_{cd}-\sigma_{m}}{\frac{L*\tau_c}{D}-\sigma_{m}}  \\\\Substituting:\\\\V_f=\frac{630*10^6-17.5*10^6}{\frac{0.0024*17*10^6}{0.00003} -17.5*10^6} \\\\V_f=0.456

6 0
3 years ago
Document the XSS stored exploit script: Use the View Source feature of the web page and create a screenshot of the few lines cod
Natali [406]

Answer:

Hold on let me ask my brother

Explanation:

5 0
3 years ago
The way most recursive functions are written, they seem to be circular at first glance, defining the solution of a problem in te
EastWind [94]

Question Continuation

int factorial(int n) {

if(n == 0)

return 1;

else

return n * factorial(n - 1);

}

Provide a brief explanation why this recursive function works.

Show all steps involved in calculating factorial(3) using the function defined.

Answer:

1. Brief explanation why this recursive function works.

First, the recursive method factorial is defined.

This is the means through with the machine identifies the method.

The method is defined as integer, the machine will regard it as integer.

When the factorial is called from anywhere that has access to it, which in this case is within the factorial class itself. This means you can call it from the main method, or you can call it from the factorial method itself. It's just a function call that, well, happens to call itself.

2. Steps to calculate factorial(3)

1 First, 3 is assigned to n.

2. At line 2, the machine checks if n equals 0

3. If yes, the machine prints 1

4. Else; it does the following from bottom to top

factorial(3):

return 3*factorial(2);

return 2*factorial(1):

return 1;

Which gives 3 * 2 * 1 = 6

5. Then it prints 6, which is the result of 3!

6 0
3 years ago
The heat required to raise the temperature of m (kg) of a liquid from T1 to T2 at constant pressure is Z T2CpT dT (1) In high sc
a_sh-v [17]

Answer:

(a)

<em>d</em>Q = m<em>d</em>q

<em>d</em>q = C_p<em>d</em>T

q = \int\limits^{T_2}_{T_1} {C_p} \, dT   = C_p (T₂ - T₁)

From the above equations, the underlying assumption is that  C_p remains constant with change in temperature.

(b)

Given;

V = 2L

T₁ = 300 K

Q₁ = 16.73 KJ    ,   Q₂ = 6.14 KJ

ΔT = 3.10 K       ,   ΔT₂ = 3.10 K  for calorimeter

Let C_{cal} be heat constant of calorimeter

Q₂ = C_{cal} ΔT

Heat absorbed by n-C₆H₁₄ = Q₁ - Q₂

Q₁ - Q₂ = m C_p ΔT

number of moles of n-C₆H₁₄, n = m/M

ρ = 650 kg/m³  at 300 K

M = 86.178 g/mol

m = ρv = 650 (2x10⁻³) = 1.3 kg

n = m/M => 1.3 / 0.086178 = 15.085 moles

Q₁ - Q₂ = m C_p' ΔT

C_p = (16.73 - 6.14) / (15.085 x 3.10)

C_p = 0.22646 KJ mol⁻¹ k⁻¹

6 0
3 years ago
Other questions:
  • Please Help It's really Important
    12·1 answer
  • Consider the following grooves, each of width W, that have been machined from a solid block of material. (a) For each case obtai
    8·1 answer
  • List the three main methods employed in dimensional analysis
    6·1 answer
  • Write a matrix, that is a lower triangular matrix.
    15·1 answer
  • Design an Armstrong indirect FM modulator to generate an FM signal with a carrier frequency 98.1 MHz and a frequency deviation △
    15·1 answer
  • Which one is dependent variable?
    13·1 answer
  • Which process made making copies of technical drawings easier?
    8·1 answer
  • 2=333=3= im single text in comment
    13·2 answers
  • ) A flow is divided into two branches, with the pipe diameter and length the same for each branch. A 1/4-open gate valve is inst
    5·1 answer
  • I NEED HELP!!!Situation: A client has hired Jose, a materials engineer, to develop a package for an item he has begun to market.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!