Answer:

Explanation:
We know that from Newton's second law of motion, F=ma hence making acceleration the subject then
where a is acceleration, F is force and m is mass
Also making mass the subject of the formula 
For
and
hence 
<h2>The increase in length = 1.87 x 10⁻²</h2>
Explanation:
When copper rod is heated , its length increases
The increase in length can be found by the relation
L = L₀ ( 1 + α ΔT )
here L is the increased length and L₀ is the original length
α is the coefficient of linear expansion and ΔT is the increase in temperature .
The increase in length = L - L₀ = L₀ x α ΔT
Substituting all these value
Increase in length = 27.5 x 1.7 x 10⁻⁵ x 35.9
= 1.87 x 10⁻² m
The choices are confusing. Air, oil, and alcohol are fluids at any reasonable temperature. Dry cement is not.
The density of the nickel was greater than that of the quarter and penny, thus, the results supports the hypothesis.
<h3>What is density of substance?</h3>
The density of a substance is a measure of how tightly-packed the particles of the substance are.
Density is calculated as the ratio of the mass of the substance and the volume of the substance.
The hypothesis of the lab to compare the densities of a penny, a nickel, and a quarter is:
- If the nickel has a greater density than the quarter and penny, then it will have a greater mass to volume ratio. If the nickel has a lower density than the quarter and penny, then it will have a lower mass-to-volume ratio.
The average mass and the average volume of a penny, a nickel, and a quarter are then used to determine the density of each coin.
Based on obtained results, it would be found that the density of the nickel was greater than that of the quarter and penny. Therefore, the results supports the hypothesis.
In conclusion, the density of a substance depends on the mass and the volume.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Answer:
51.85m/s
Explanation:
Given parameters:
Mass of ball = 0.0459kg
Force = 2380N
Time taken = 0.001s
Unknown:
Speed of the ball afterwards = ?
Solution:
To solve this problem, we use Newton's second law of motion:
F = m x
F is the force
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
2380 = 0.0459 x
0.0459v = 2.38
v = 51.85m/s