Answer:
In this case we are dealing with the pythagorean theorm involving right angled triangles. This theorm states that a^2 + b^2 = c^2 which means the square of the hypotenuse (side c, opposite the right angle) is equal to the square of the remaining two sides.
In this case we will say that a = 3963 miles which is the radius of the earth. c is equal to the radius of the earth plus the additional altitude of the space station which is 250 miles; therefore, c = 4213 miles. We must now solve for the value b which is equal to how far an astronaut can see to the horizon.
(3963)^2 + b^2 = (4213)^2
b^2 = 2,044,000
b = 1430 miles.
The astronaut can see 1430 miles to the horizon.
Explanation:
:D hopes this Helps
Can Soccer be traced back to the early Greeks and Romans
Answer:
O False,
Explanation:
Although the game of soccer has been around for more than 2,000 years, soccer as we know it today is traced back to England. The game was once played in ancient China, Greece, Rome, and Japan but with different rules and variations.
Answer:
The hammer and the wall exert forces on each other that are equal in magnitude but in opposite directions.
Explanation:
currently doing corrections on the test!
:)
Answer:
a) The rotational inertia when it passes through the midpoints of opposite sides and lies in the plane of the square is 16.8 kg m²
b) I = 50.39 kg m²
c) I = 16.8 kg m²
Explanation:
a) Given data:
m = 0.98 kg
a = 4.14 * 4.14
The moment of inertia is:

For 4 particles:

b) Distance from top left mass = x = a/2
Distance from bottom left mass = x = a/2
Distance from top right mass = x = √5 (a/2)
The total moment of inertia is:

c)

Maybe you can divide the volts its twelve if you do that but itll show you how much to double it by