At t =0, the velocity of A is greater than the velocity of B.
We are told in the question that the spacecrafts fly parallel to each other and that for the both spacecrafts, the velocities are described as follows;
A: vA (t) = ť^2 – 5t + 20
B: vB (t) = t^2+ 3t + 10
Given that t = 0 in both cases;
vA (0) = 0^2 – 5(0) + 20
vA = 20 m/s
For vB
vB (0) = 0^2+ 3(0) + 10
vB = 10 m/s
We can see that at t =0, the velocity of A is greater than the velocity of B.
Learn more: brainly.com/question/24857760
Read each question carefully. Show all your work for each part of the question. The parts within the question may not have equal weight. Spacecrafts A and B are flying parallel to each other through space and are next to each other at time t= 0. For the interval 0 <t< 6 s, spacecraft A's velocity v A and spacecraft B's velocity vB as functions of t are given by the equations va (t) = ť^2 – 5t + 20 and VB (t) = t^2+ 3t + 10, respectively, where both velocities are in units of meters per second. At t = 6 s, the spacecrafts both turn off their engines and travel at a constant speed. (a) At t = 0, is the speed of spacecraft A greater than, less than, or equal to the speed of spacecraft B?
If the pulling is done parallel to the floor with constant velocity, then the box is in equilibrium. In particular, the weight and normal force cancel, so that
<em>n</em> = 38 N
The friction force is proportional to the normal force by a factor of 0.27, so that
<em>f</em> = 0.27 (38 N) ≈ 10.3 N
and so the answer is D.
The answer is 15.0N its explained in newtons third law hope this helps:)
Answer:
Following are the responses to these question:
Explanation:
Since the
is the current of ckt which depend on the reactance which inductor that also enables the ckt and inductor resistance
for capacities
for
![\to X_{L}=wL](https://tex.z-dn.net/?f=%5Cto%20X_%7BL%7D%3DwL)
When ![w \longrightarrow 2w](https://tex.z-dn.net/?f=w%20%5Clongrightarrow%202w)
then
therefore,
remains at the same so, the maximum current remains the in same ckt.