Nuclear fusion reactions convert protons into helium; thus, becoming the source of all energy radiated by the sun.
Answer: Option D
<u>Explanation:</u>
Nuclear fusion reaction is one among the two nuclear reactions in which the atoms nucleus interact with each other to produce the products. In nuclear fusion, two smaller atoms react together to form a new atom with bigger size.
So large amount of energy is required to start the nuclear fusion reaction. The fusion reactions mostly occurs in stars. The illumination in Stars even the Sun is due to nuclear fusion reaction occurring with the atoms present in them.
Mostly the energy radiated by Sun is due to the protons-protons chain reaction. In this chain reaction, the protons get converted into helium due to nuclear fusion reaction, thus becoming the source of all energy radiated by the Sun.
Answer:
microscopic means that they are very very tiny, you cannot see them with the human eye, you have to use a tool like a microscope
Explanation:
Given that,
Radius of track, r = 50 m
time , t = 9 s
velocity, v = ?
Distance covered by car in one lap around a track is equal to the circumference of the track.
C = 2 π r = 2 * 3.14 * 50
C = 314.159 m
Distance covered by car, s = 314.159 m
Velocity = distance/ time
V = 314.159 / 9
V = 34.9 m/s
The average velocity of car is 34.9 m/s.
Answer:
<em>C) It is either ferromagnetic or paramagnetic</em>
Explanation:
The complete question is given below
We observe that a small sample of material placed in a non-uniform magnetic field accelerates toward a region of stronger field. What can we say about the material?
A) It must be ferromagnetic.
B) It must be paramagnetic.
C) It is either ferromagnetic or paramagnetic.
D) It must be diamagnetic.
A ferromagnetic material will respond towards a magnetic field. They are those materials that are attracted to a magnet. Ferromagnetism is associated with our everyday magnets and is the strongest form of magnetism in nature. Iron and its alloys is very good example of a material that readily demonstrate ferromagnetism.
Paramagnetic materials are weakly attracted to an externally applied magnetic field. They usually accelerate towards an electric field, and form internal induced magnetic field in the direction of the external magnetic field.
The difference is that ferromagnetic materials can retain their magnetization when the externally applied magnetic field is removed, unlike paramagnetic materials that do not retain their magnetization.
In contrast, a diamagnetic material is repelled away from an externally applied magnetic field.