The magnitude of the centripetal acceleration of the car as it goes round the curve is 4.8 m/s²
<h3>Circular motion</h3>
From the question, we are to determine the magnitude of the centripetal acceleration.
Centripetal acceleration can be calculated by using the formula

Where
is the centripetal acceleration
is the velocity
and
is the radius
From the given information

and 
Therefore,



Hence, the magnitude of the centripetal acceleration of the car as it goes round the curve is 4.8 m/s²
Learn more on circular motion here: brainly.com/question/20905151
First, let's take a look at the equation for the force of gravity between two objects:
F = (GMm)/r², where,
G = gravitational constant = 6.67 x 10⁻¹¹
M = mass of one object
m = mass of the other object
r = distance between the two objects
From this equation, we can see that the force of gravity is directly proportional to the mass of the two objects and inversely proportional to the distance between them. We can then say that the Earth is <span>more attracted to the sun than the moon because of the massive mass of the Sun (1.9891 x 10</span>³⁰)<span> compared to moon (7.3577 x 10</span>²²<span>). Although, the moon is nearer to the Earth, it has little effect to bring down the gravitational pull of the Sun. </span>
A. Through the direct contact of particles
Answer:
Part a)

Part b)

Part c)

Explanation:
As we know that acceleration is rate of change in velocity of the object
So here we know that


Part a)
differentiate x and y two times with respect to time to find the acceleration






Now the acceleration of the object is given as

at t= 1.1 s we have

now the net force of the object is given as



now magnitude of the force will be

Part b)
Direction of the force is given as



Part c)
For velocity of the particle we have




now at t = 1.1 s

now the direction of the velocity is given as


